

Vidyavardhini's College of Engineering & Technology Department of Computer Engineering

Academic Year 2024-25 (Odd Sem)

Innovation activities by the faculty members in teaching-learning

Sr. No.	Name of Faculty	Course Name / Sem / Course Code	Innovative / Creative activity used	Short Description of the activity
1	Dr. Megha Trivedi	Discrete Structure and Graph Theory/III/CSC3 02	Audio- Video assignment	Students were asked to solve a puzzle using mathematical logic and record a video of the solution using illustration/animation.
2	Dr. Dinesh Patil	Software Engineering	Collaborati ve Incremental Problem- Solving (CIPS) Method	Groups of the students were created and each group of the students was asked to select a particular task. The students were asked to solve the task in an incremental way.
3	Dr. Vikrant Agaskar	ARVR/VII/CSD C7021	Brain storming	During the lecture session interested students were asked to take one real life case of the project. Every group then explored and applied every new concept learnt from each module to their selected case and elaborated.
4	Dr. Swapna Borde	ML/VII/BE/CSC 701	Online Poll	Online Poll allows participants to see live results as they respond to questions. This activity adds to interaction in classroom and helps identify machine learning problems, comment, discuss and debate over it. Besides this, it gives an opportunity to the students to have a voice and take on an active role in their learning.

		NA' 1NA	X <i>t</i> ' 1 ' ' ' 1 1'
		Mind Maps	Mind mapping is simply a diagram
	CSC504		used to visually represent or outline
			information. It is a powerful graphic
			technique you can use to translate
			what's in your mind into a visual
			picture. Mind maps for preprocessing
			help students to note down the various
			tasks and techniques involved in
			cleaning, transforming, integration and
			reduction on one sheet.
Dr. Anil	TE/V/Div-	Collaborati	To analyze requirement analysis and
Hingmire	3/CSC602/Softwa	ve	perform requirement modelling on
	re Engineering	Incremental	given problem statement. The
		Problem-	Collaborative Incremental Problem-
		Solving	Solving (CIPS) Method is an
		(CIPS)	instructional strategy designed to
		Method	engage students in progressively
			solving complex problems through
			collaborative, step-by-step analysis. In
			this approach, students work together
			to break down large or challenging
			problems into smaller, manageable
			parts, addressing each part
			incrementally and building on
			previous solutions.
		Hingmire 3/CSC602/Softwa	CSC504 CSC504 Dr. Anil TE/V/Div- Collaborati Hingmire 3/CSC602/Softwa ve re Engineering Incremental Problem- Solving (CIPS)

		BE/VII/CSDC70	Thought	Thought Experiment: Building a
		13/NLP	Experiment	Language Model Without a
				Dictionary. This thought experiment
				explores the challenges and innovative
				approaches in building a language
				model without dictionaries or labeled
				data. Students tackle developing a
				model using only unstructured text,
				prompting critical thinking on
				unsupervised and self-supervised
				learning, distributional semantics, and
				the complexities of understanding
				language without predefined word
				meanings.
6	Ms. Smita	DS/III/SE-	Peer-led	A unique peer-led learning session was
	Jawale	1/CSC303	LeetCode	organized to improve students'
			Problem-	understanding of data structures,
			Solving	algorithms, and competitive
			Presentatio	programming. Students chose a topic
			ns	from LeetCode, presented it to the
				class, and shared their approach to
				solving coding challenges.
		ADBMS/V/TE-	Fastest	In this Fastest Finger First activity,
		1/CSDL05013	Finger First	students are divided into different
				groups. The faculty assigns sets of
				queries on MongoDB to the students in
				classroom. Students have to raise
				hands and give solutions.
				The group that submits their answers
				first is declared the winner.

7	Mr. Sunil	CG/III/SE/CSC30	CrossWord	Crossword puzzles are engaging ICT
/	Katkar	5	Puzzle	tools for learning that promote active
	Natkai	5	Fuzzie	0 1
				participation and reinforce subject-
				specific vocabulary and concepts. In
				an educational context, crosswords
				encourage critical thinking, enhance
				memory retention, and help students
				learn in a fun, interactive way.
8	Ms. Swati	DWM/V/TE-2	Mind Maps	The topic was explained to the students
	Verma	and TE3/		first through the slides. Then they were
		CSC504		asked to sketch mind maps in groups
				using charts, colors, etc.
9	Mrs. Sneha	ADBMS/V/TE-	Fastest	In this Fastest Finger First activity,
	Mhatre	2/CSDLO5013	Finger First	students are divided into different
				groups. The faculty assigns sets of
				queries on MongoDB to the students in
				classroom. Students have to raise
				hands and give solutions.
				The group that submits their answers
				first is declared the winner.
		BDA/VII/BE/CS	Collaborati	In this Activity, students asked to sit
		C702	ve	equally in 4 rows in classroom.
			Learning-	Assigned different types of NoSQL to
			Debate	each row.
				Course instructor allotted 45 minutes
				time to the individual row to read the
				topic from reference book or any other
				material
10	Ms. Neha	DLCOA/III/SE-1	Digital	Digital Flux is a real-time interactive
	Surti	& SE-2/CSC304	Flux	polling which allows participants to
				see live results as they respond to
				questions. It enables real-time
				engagement with students offering
				interactivity, ease of use, and
				immediate feedback.
				miniculare iccuback.

11	Ms. Aarti Puthran	TCS /V/TE- 2/CSC501	Educational Tambola: A Fun Way to Learn	In this game each student receives a Tambola ticket. The faculty begins the game by randomly selecting and announcing a number (or word/symbol/letter) from the pool. For each announced number, the faculty asks a question that is linked to it. The question could be related to key concepts, definitions, problem- solving, or course-related scenarios.
		DS/III/SE- 2/CSC303	Peer-led LeetCode Problem- Solving Presentatio ns	In order to enhance students' understanding of data structures, algorithms, and competitive programming, a unique peer-led learning session was organized. Students were encouraged to select a topic from LeetCode, present it to the class, and share their approach to solving specific coding challenges.
12	Ms. Brinal Colaco	OOPM/III/SE- 3/CSL304	Collaborati ve Learning through Textbook Exploration	Before the activity began, students were instructed to issue a Java textbook from the library. The class was then divided into groups of 10, and each group was assigned two questions on exception handling to answer and explain to the entire class. Each group was evaluated and given a score out of 10 based on the quality of their explanations.
13	Mr. Chintamani Chavan	DLCOA/III/SE-1 & SE-3/CSC304	Digital Flux	Digital Flux is a real-time interactive polling which allows participants to see live results as they respond to questions. It enables real-time engagement with students offering interactivity, ease of use, and immediate feedback.

		SE/III/R-19/Div- 2/OOPJ	Java Debugging Challenge: Find and Fix	In the Java Debugging Challenge, students work in small groups to debug Java code with intentional syntax, logical, or runtime errors. Each group is given a code snippet that appears to perform a specific function but contains several errors. Their task is to identify, explain, and fix these issues to make the program run correctly.
14	Ms. Priti Rumao	TCS/V/TE-1 & TE-3/CSC501	TCS_Tamb ola	Tambola is a fun and easy game that can be played with numbers, letters or words. The organizer (faculty in our case) calls the number- one at a time and then asks a question associated with it. Once students have identified the answer for the said question then they need to strike Number/symbol/word/letter on their tickets.

15	Mrs. Soniya	CN/V/TE-1 &	CN_Netwo	A "Computer Network Jigsaw Puzzle
15	Khatu	TE-3/CSC503	rk Puzzle	Game" designed for students uses
	Kilatu	1L-5/CSC505	Game	visual, interactive components to teach
			Game	· · · · ·
				foundational concepts like the TCP/IP
				and OSI models, along with basic
				protocols (TCP, IP, DNS). Each puzzle
				piece represents network layers or
				protocol elements, challenging players
				to assemble the models in the correct
				order (e.g., OSI's seven layers or
				TCP/IP's four layers). As students
				complete levels, they explore each
				layer's real-world functions
				(application, transport, network),
				gaining insight into data flow across
				layers. Hints and feedback reinforce
				understanding of layer dependencies
				and protocol interactions, turning
				complex network structures into
				engaging, hands-on learning.
				Developed by students using Flutter,
				this project also tested their technical
				knowledge.
16	Ms. Bhakti	ТЕ	Fastest	
10				In this Fastest Finger First activity, students are divided into different
	Jadhav	Div3/ADBMS/C	Finger First	
		SDLO5013		groups. The faculty assigns sets of
				queries on MongoDB to the students
				on GCR. Students have to submit their
				performed queries with output to the
				faculty as early on GCR or WhatsApp.
				The group that submits their answers
				first is declared the winner.

17	Mrs. Manali	TE	The	It is an interactive quiz-based activity
	Patekar	Div2/CN/CSC50	Network	designed to enhance student
		3	Mastermin	engagement and understanding the
			d	basics of computer networking. Using
			Challenge	Kahoot, students participate in a
				competitive, fast-paced environment .
				The activity promotes active learning,
				peer collaboration, and instant
				feedback, helping students reinforce
				their knowledge and identify areas for
				improvement. The challenge fosters
				motivation and creates an enjoyable
				learning experience while assessing
				the students' grasp of essential
				networking principles.

Academic Year 2024-25 (Even Sem)

Innovation activities by the faculty members in teaching-learning

Sr. No.	Name of Faculty	Course Name / Sem / Course Code	Innovative / Creative activity used	Short Description of the activity
1	Dr. Megha	Optimization in	Ant	Ant Colony Optimization (ACO)
	Trivedi	Machine	Behavior	through interactive and engaging
		Learning/VIII/CS	Simulation	simulation game.
		DC8021	Game	

2	Dr. Satish Salunkhe	SE/IV/ Database Management system/CSC403	Debugging Database Task Oracle Academy course certificatio n	This task is to identify, analyze, and resolve errors or anomalies in database systems. This involves debugging SQL queries, correcting schema design issues, ensuring data integrity. Oracle Academy designed modules certification courses conducted in the laboratory.
3	Dr. Dinesh Patil	Operating System/IV/CSC4 04	Drama on Deadlock	The students were asked to create a deadlock situation and provide the ways to come out of it.
4	Dr. Vikrant Agaskar	PM/VIII/ILO802 1	Brain storming	During the lecture session students were asked to take one real life case of the project. Students proposed a few cases and then with discussion amongst themselves selected one case. All the students then explored and applied every phase of the project management process to the selected case. This activity gave students confidence to apply knowledge of Project Management to any real-life project.
		IoT/VI/CSDLO6 011	Peer Teaching	Students were encouraged to deliver a lecture for an hour on the topic of their choice from the syllabus. A group of students voluntarily presented a topic for around 45 minutes. The session was interactive and the fellow students were encouraged to ask doubts which were solved by presenting students and the subject teacher.

5	Dr. Swapna Borde	Analysis of Algorithm/IV/CS C402	Role Play	Students were assigned some value. Then they were told to arrange themselves as per the steps of Selection Sort and Insertion Sort Algorithms. This method encourages participation and improves understanding of topics.
6	Dr. Anil Hingmire	Artificial Intelligence/TE1 and TE3/VI	AI Riddles & Brain Teasers	The activity was conducted to reinforce AI concepts through an interactive quiz format. Students were presented with a series of riddles, puzzles, and clues that hinted at various AI tools, concepts, and applications.
7	Ms. Smita Jawale	SE/IV/ Database Management system/CSC403	Debugging Database Task	This task is to identify, analyze, and resolve errors or anomalies in database systems. This involves debugging SQL queries, correcting schema design issues, ensuring data integrity.
8	Mr. Sunil Katkar	SE Sem-IV Div-1 Microprocessor	Treasure Hunt	This activity is designed as a treasure hunt where students will form groups and find hidden clues and collect them. Once all clues are collected as an output of clues they will write an assembly language program.
9	Dr. Swati Varma	Distributed Computing/ BE/VIII/ CSC801	Autopsy of any distributed System	Autopsy of distributed systems like UBER, Amazon, Netflix and Google Search to identify the key techniques/methods used by them.
10	Mrs. Sneha Mhatre	Mobile Computing/TE 1 & TE 3/VI/CSC603	Written Test on GSM Abbreviatio ns	GSM System Architecture explained in the class. Then students were asked to remember the abbreviations of GSM. This method encourages participation and improves Understanding of topics.

11	Ma Naha	Crustan	Desathe	Deer the Mie is designed to mel-
11	Ms. Neha	System	Pass the	Pass the Mic is designed to make
	Surti	programing and	Mic	learning interactive and engaging on
		Compiler		topics like Macro Processor and LL1.
		Construction / TE		Students, divided into three groups,
		1/ TE 3 CSC601		discussed assigned questions for 5
				minutes and presented their answers as
				the mic was symbolically passed. This
				method encouraged participation,
				teamwork, and improved conceptual
				understanding.
12	Ms. Brinal	BE/VIII/Applied	Role-	The objective of this role-playing
	Colaco	Data	Playing	activity was to foster an interactive and
		Science/CSDO80		innovative learning environment
		13		where students could take on specific
				roles in a data science project—such as
				data scientists, business stakeholders,
				and end-users—and collaboratively
				brainstorm key concepts and real-
				world challenges in the domains of
				Hypothesis Testing, Clustering, Time
				Series Forecasting, Recommendation
				Engines
13	Mr.	Analysis of	Role Play	The students acted out the logic of
	Chintamani	Algorithm/SE/IV/		sorting and searching algorithms by
	Chavan			taking on the roles of elements,
				pointers, and comparators.
				pointers, and comparators.
				Students are physically engaged with
				algorithmic logic which encourages
				group problem-solving and teamwork.

		Artificial Intelligence/TE2/ VI	AI Riddles & Brain Teasers	The activity was conducted to reinforce AI concepts through an interactive quiz format. Students were presented with a series of riddles, puzzles, and clues that hinted at various AI tools, concepts, and applications.
14	Ms. Priti Rumao	Operating System / SE2/ IV	Open Book Test	The activity is designed to enhance students' conceptual understanding of various CPU scheduling algorithms by engaging them in an interactive, practical, and experiential learning environment.
		Mobile Computing/TE2/ VI	Open Book Test	The activity is designed to enhance students' conceptual understanding of various CPU scheduling algorithms by engaging them in an interactive, practical, and experiential learning environment.
15	Mrs. Soniya Khatu	Microprocessor/ SE2 and SE3 /IV	Treasure Hunt	This activity is designed as a treasure hunt where students will form groups and find hidden clues and collect them. Once all clues are collected as an output of clues they will write an assembly language program.
16	Ms. Bhakti Jadhav	Cryptography and System Security / TE3/ VI	Cryptocrac ker	The activity is designed as a crypto challenge where individuals solve encryption and decryption codes using different classical and modern cryptographic techniques
		Operating System / SE1/ IV	CPU Wars: The Scheduling Game	The activity is designed to enhance students' conceptual understanding of various CPU scheduling algorithms by engaging them in an interactive, practical, and experiential learning environment.

17	Mrs. Manali Patekar	Cryptography and System Security / TE2 & TE3/ VI	Cryptocrac ker	The activity is designed as a crypto challenge where individuals solve encryption and decryption codes using different classical and modern cryptographic techniques. This innovative activity not only reinforced core cryptography concepts but also fostered a fun and interactive learning environment.
18	Ms. Joyce Dsouza	Quantitative Analysis/ TE1, TE2 & TE3/ VI/ CSDLO6013	Quantitativ e Jeopardy	Quantitative Jeopardy is a game-based learning activity that follows the format of the classic Jeopardy! game but focuses on quantitative reasoning, mathematics, and numerical problem- solving. It is often used in educational settings to reinforce mathematical concepts, data analysis, and logical reasoning.
19	Ms. Vinal Waghela	System programing and Compiler Construction / TE 2 CSC601	Pass the Mic	Pass the Mic is designed to make learning interactive and engaging on topics like Macro Processor and LL1. Students, divided into three groups, discussed assigned questions for 5 minutes and presented their answers as the mic was symbolically passed. This method encouraged participation, teamwork, and improved conceptual understanding.

Dr. Megha Trivedi HOD, Computer Engineering