University of Mumbai Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

Curriculum Scheme: Rev2016

Examination: TE Semester VI

Course Code: CSDLO6021 and Course Name: Machine Learning

Time: 2 hour ____

_

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks					
1.	 Which of the following are examples of unsupervised learning? i. Modeling a spam filter from a set of labeled emails as spam and not spam ii. Given a set of news articles found on the web, group them into articles under different categories iii. Given a database of customer data, automatically discover market segments and group customers into different market segments iv. Given a database of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not 					
Option A:	Both i and iv					
Option B:	Both i and iii					
Option C:	Both ii and iii					
Option D:	Both iii and iv					
	 Machine learning is automatic learning based on experience Machine learning is programmed so that it learns, and past experience is not required. It can learn and improve from the past experience without being explicitly programmed. Machines can learn from past experience, but it must be explicitly programmed. 					
Option A:	1 and 2					
Option B:	2 and 4					
Option C:	1 and 4					
Option D:	3 and 4					
3.	Which of the following is an example of reinforcement learning?					
Option A:	Stock price prediction					
Option B:	Sentiment analysis					
Option C:	Customer segmentation					

Option D:	Robot in a maze							
4.	In Downhill Simplex method, if $f(x)$ at the reflected point is greater than $f(x)$ at worst point (N) then the new point is obtained by							
Option A:	Contraction							
Option B:	Multiple Reflection							
Option C:	Expansion							
Option D:	Multiple contraction							
5.	In classical Newton's Method, having Hessian Matrix H, Gradient G, X_{K+1} is							
	computed using							
Option A:	$X_{K+1} = X_K + H_K^{T*}G_K$							
Option B:	$X_{K+1} = X_K - H_K * G_K$							
Option C:	$X_{K+1}=X_K-H_K*G_K$							
Option D:	$X_{K+1} = X_K + H_K * G_K$							
6.	Which of the following is not true about the derivative free techniques?							
Option A:	They use evolutionary concepts.							
Option B:	The objective function has to be differentiable							
Option C:	These methods use an empirical approach for analysis.							
Option D:	Random search and Downhill Simplex are examples of Derivative free techniques.							
7.	Given $X = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} W = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}$ compute I(net) given lambda = 0.5 using							
	ii Unipolar continuous activation function							
Option A:	i. 0.7615 ii. 0.880							
Option B:	i. 0.880 ii. 0.7615							
Option C:	i -0.7615 ii 0.1192							
Option D:	i. 0.119 ii0.7615							
F								
8.	Hebbian learning is an example of and perceptron learning is							
	an example of							
Option A:	Feedforward supervised learning, supervised binary response							
Option B:	Feedforward unsupervised learning, supervised binary response							
Option C:	Feedback supervised learning, unsupervised binary response							
Option D:	Feedback unsupervised learning, supervised multivariate response							
9.	is a type of learning rule which works with a layer of neurons.							
Option A:	Perceptron							
Option B:	Hebbian							
Option C:	Widrow Hoff							
Option D:	Winner takes all							
10.	Which of these statements are false with respect to the metrics in linear regression?							
	a. For a strong linear regression R^2 value should be high							
	b. Multiple R value of 1 represents perfect positive relationship							

	 c. Karl pearson value of -1 indicates total negative linear correlation d. High value of Sum of Squared Errors(SSE) indicates perfect fit
Option A:	Both A and B are false
Option B:	Both A and C are false
Option C:	Both B and C are false
Option D:	Only D is false
^	
11.	The graph below represents a regression line predicting Y from X. The values on the graph shows the residuals for each predicted value. Use this information to compute the Sum of squared errors (SSE)
	x
Option A:	4.02
Option B:	3.02
Option C:	1.01
Option D:	0
12.	
	Actual True Actual False
	Predicted Irue 156 20 Predicted Ealso 14 50
	Compute the specificity and the precision?
Option A:	Specificity = 88.6% Precision = 71.4%
Option B:	Specificity = 71.4 % Precision = 88.6%
Option C:	Specificity = 28.5% Precision = 11.36%
Option D:	Specificity = 71.4% Precision = 11.36%
· · ·	
13.	Which is not true statement about Kernel Trick
Option A:	A Kernel Trick is a method where a Non Linear data is projected onto a higher dimension space so as to make it easier to classify the data where it could be linearly divided by a plane.

Option B:	A Kernel Trick is a method of transforming the original (non-linear) input data into a higher dimensional space (as a linear representation of data).
Option C:	The Kernel Trick allows us to take linear Support Vector Machines and extend their functionality to classify non-linear data sets.
Option D:	A Kernel Trick is a method which can easily separates the data points in a lower dimensionality space
14	The difference between now Devesion closefier and Devesion belief networks is
14.	The init conditional probability distributions are considered in Payasian Paliaf
Option A.	networks
Option B:	The joint conditional probability distribution is not considered in Bayesian Belief networks
Option C:	Class conditional independence is always considered in Bayesian Belief networks
Option D:	Class conditional independence is sometimes considered in Bayesian Belief Networks
15	
13.	Today's weather Tomorrow's weather Initial Probability values
	Sunny 0.25
	Rainy 0.75
	Foggy 0.30
	0.8 0.5
	Sunny Foggy
	0.05 0.3 0.2 Rainy 0.2
	0.6
	Given that today is sunny what is the probability that tomorrow is sunny and the day after is rainy
Option A:	0.01
Option B:	0.004
Option C:	0.04
Option D:	0.32

16.	 What is true about Markov Property I. Markov Property is very useful for explaining events, and it cannot be the true model of the underlying situation in most cases. II. The state of the system at time t+1 depends only on the state of the system at time t III. The advantages of Markov property are complexity and forecasting accuracy.
	IV. Markov property is used to forecast the value of a variable whose predicted value is influenced only by its current state
Option A:	i and ii
Option B:	ii and iii
Option C:	ii and iv
Option D:	iii and iv
17.	A square matrix isif all eigen values are Positive definite, Positive Negative definite, Negative Positive definite, Negative
Option A:	Both ji and j are correct
Option B:	Both iii and iv are correct
Option C:	All four options are wrong
Option D:	Either iii or iv is right
18.	 Identify the correct options regarding Principal Component Analysis (a) Principal component analysis (PCA) can be used with variables of any mathematical types: quantitative, qualitative, or a mixture of these types (b) The major principal component axis has dimensions having the maximum variance. (c) The major principal component axis has dimensions having the minimum variance (d) The most information is retained among the top few principal axes.
Option A:	Both a and b
Option B:	Both b and d
Option C:	Both a and d
Option D:	Both c and d

19.	Compute the eigen values for matrix $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$
Option A:	$\lambda I = 8; \ \lambda 2 = -2$
Option B:	$\lambda 1 = -8; \ \lambda 2 = 2$
Option C:	$\lambda I = 4; \lambda 2 = -4$
Option D:	$\lambda 1 = -4; \ \lambda 2 = 4$
20.	$ \begin{array}{c} $
	In the graphs 1, 2 and 3 which is best fitted and which is overfitted?
Option A:	2 is best-fitted and 1 is over-fitted
Option B:	1 is best-fitted and 2 is over-fitted
Option C:	2 is best-fitted and 3 is over-fitted
Option D:	1 is best-fitted and 3 is over-fitted

Q2 (20 Marks Each)							
A	Solve a	ny T	Гwo				5 marks each
i.	Why is	the S	Support V	Vector Machine(S	SVM) called	the maxi	mum margin
	classifi	er?E	xplain ma	athematically the	formulation	of margin	1.
ii.							
	What is	s a sa	ddle poir	nt? Minimize f($x)=x_1^2+x_2^2+2$	$2x_1x_2$, with	n starting initial
	point X	K ₀ is []	[0.5,-0.1]	(Perform 2 itera	ation only)us	ing the ste	epest descent
iii.	What a	re the	e steps in	designing a Mad	chine Learnin	ng Applica	ation
В	Solve a	nny (One				10 marks
	each		610	1 1 1			
1.	Two qu	iestio	ons of 10 i	marks each have	to be asked		
	For the	tollo	owing dat	a, to construct th	e decision tr	ee calcula	te Gini indexes
	and det	ermi	ne which	attribute is the r	oot attribute.	(4)	
	Sr.	. No	Income	Defaulting Level	Credit Score	Location	Give Loan?
	1		low	high	high	bad	no
	2		low	high	high	good	no
	3		high	high	high	bad	yes
	4		medium	medium	high	bad	yes
	5		medium	low	low	bad	no
	6		medium	low	low	good	yes
	7		high	low	low	good	yes
	8		low	medium	high	bad	no
	9		low	low	low	bad	no
	10		medium	medium	low	bad	no
	11		low	medium	low	good	yes
	12		high	medium	high	good	yes

		13	high	high	low	bad	no	
		14	medium	medium	high	good	yes	
ii.	List	down t	he steps o	of PCA				
	Usi	ng PCA	compute	the transformed	matrix of A			
	Wh	ere A is						
		_	~ _					
		L	2					
	().5	1.5					
		0	0.5					
		-0.5	0.25					
		_						

Q3. (20 Marks Each)	
A	Solve any Two 5 marks each
i.	Define logit function. Explain the importance of logit function in logistic
	regression with appropriate example
ii.	Given
	$\begin{array}{c} \chi_{1} \\ \chi_{2} \\ \chi_{2} \\ \chi_{2} \\ \end{array} \begin{array}{c} 1 \\ \chi_{1} \\ \chi_{2} \\ \chi_{2$
	X = [3, 5] W = [12] Y = [1, -5] C = 1
	Compute output Z using binary bipolar activation function. Also compute the new weights $y_1, y_2, w_{11}, w_{12}, w_{21}, w_{22}$
iii.	Define covariance ? For the given dataset, compute the covariance matrix

	$\begin{array}{ccc} X_1 & X_2 \\ 2 & 5 & 2 & 4 \end{array}$
	0.5 0.7
	2.2 2.9
	1.9 2.2
	3.1 3.0
	2.3 2.7
	2.0 1.6
	1.0 1.1
	1.5 1.6
	1.2 0.9
В	Solve any One10 marks each
ii.	Explain Linear Separability problem? (2)
	Solve a linearly separable problem (AND Gate)
	Solve a linearly non separable problem (XOR gate) both using McCulloch
	Pitt Model ?
ii.	What is the role of radial basis function in separating nonlinear patterns?
	Explain with XOR Example.