University of Mumbai **Examination May-June 2021 under cluster 9(FAMT)**

Examinations Commencing from 1st June 2021

Program: BE Mechanical Engineering

Curriculum Scheme: Rev2016

Examination: Third Year Semester VI

Course Code: MEDLO6021 and Course Name: Mechatronics

Time: 2hourMax. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	A one-way valve that lets air into the reservoir of a compressor, but doesn't let it out is a
Option A:	Check valve
Option B:	Control valve
Option C:	Receiver valve
Option D:	Three way valve
1	
2.	Which of the following logic valve is known as shuttle valve?
Option A:	OR gate
Option B:	AND gate
Option C:	NOR gate
Option D:	NAND
3.	What is the notation used for the sequence of operations mentioned below?
	1. Cylinder B undergoes forward stroke
	2. Cylinder A undergoes forward stroke
	3. Cylinder A undergoes backward stroke
	4. Cylinder B undergoes backward stroke
Option A:	B-A-A+B+
Option B:	(BA)– (A B)+
Option C:	B+A+A-B-
Option D:	(BA)+ (A B)-
4.	Consider the open loop transfer function $(K(s+5)) / ((s+2)(s+6))$. In the root locus
	diagram the centroid will be located at:
Option A:	-1
Option B:	-2
Option C:	-3
Option D:	-4
<i>_</i>	DID controller stor de for
Dention A	PID controller stands for Propagational Intermal Divider Controller
Option A:	Proportional-Internal-Divider Controller
Option B:	Proportional-Integral-Derivative Controller
Option C:	Practical-Internal-Differential Controller
Option D:	Practical-Integral-Derivative Controller
6	Which of the following connet he on input that is given to the DLC2
0.	which of the following cannot be an input that is given to the PLC?
Opuon A:	Manual switch

Option B:	Relay
Option C:	Sensor
Option D:	LED Bulb
7.	For the programing of Programming Logic Controller (PLC) we use
Option A:	C-Programming
Option B:	Python Programming
Option C:	Ladder logic programming
Option D:	CNC Programming
8.	An example of discrete (digital) control is
Option A:	Varying the volume of a music system
Option B:	Turning a lamp ON or OFF
Option C:	Varying the brightness of a lamp
Option D:	Controlling the speed of a fan
9.	According to Hurwitz criterion the characteristic equation $S^3 + s^2 + 2s + 24 = 0$ is
Option A:	Stable
Option B:	Marginally stable
Option C:	Conditionally stable
Option D:	Unstable
10.	In Nyquist criterion roots of the characteristic equation are given by
Option A:	Zeros of open loop transfer function
Option B:	Zeros of closed loop transfer function
Option C:	Poles of closed loop transfer function
Option D:	Poles of open loop transfer function
11.	is the time required for the response to reach 50% of the final value
	in the first attempt.
Option A:	Rise time
Option B:	Peak time
Option C:	Settling time
Option D:	Delay time
12.	With a stator having 8 teeth and a rotor having 6 teeth in a stepper motor, step
	angle will be
Option A:	/.5°.
Option B:	15°.
Option C:	<u>30°.</u>
Option D:	45°.
12	Translavan is used to server a
13.	riansqueer is used to convert a
Option A:	physical quality into an electrical signal
Option B:	electrical signal into a physical quantity
Option C:	physical quantity into a mechanical quantity
Option D:	physical quantity into a chemical quantity
1 /	A low pass filter has a sutoff frequency of 1.5 kHz. Determine the handwidth of
14.	A low-pass liner has a culoir frequency of 1.5 kHZ. Determine the bandwidth of the filter
	ule inter.

Option A:	0.75 kHz.
Option B:	1.50 kHz.
Option C:	2.25 kHz
Option D:	3.00 kHz
15.	the output impedance of the R-2R resistor network is always equal to,
	regardless of the size (number of bits) of the network.
Option A:	0.5R
Option B:	R
Option C:	2R
Option D:	3R
16.	What is the input of the data acquisition system (DAQ) to which a transducer is
	connected called?
Option A:	control element
Option B:	interface
Option C:	channel
Option D:	function
17.	If blocks are in parallel, and the gain is G1 and G2. What will be the gain of
	resultant block
Option A:	G1+G2
Option B:	G1/G2
Option C:	G1*G2
Option D:	1+G1G2
10	
18.	Match the following notations with their meanings:
	A. G(s) 1) Laplace of error signal
	B. $H(s)$
	C. C(s)
Ontion A:	D. $E(s) = 4$ Feedback transfer function
Option B:	A = 2, B = 3, C = 1, D = 4
Option C:	A 2 B 3 C 4 D 1
Option D:	A = 2, B = 3, C = 4, D = 1
Option D.	A-1, B-2, C-3, D-4
10	While shifting a take-off point after the summing point which among the
1).	following should be added?
Option A.	Summing point in series with take-off point
Option B:	Summing point in parallel with take-off point
Option C:	Block of reciprocal transfer function
Option D:	Block of inverse transfer function
20.	What does the numbers in 3/2 valve mean?
Option A:	3 positions and 2 ports
Option B:	2 positions and 2 ports
Option C:	2 positions and 3 ports
Ontion D:	3 positions and 3 ports
	A A A A A A A A A A A A A A A A A A A

Q2	Solve any Two Questions out of Three10 marks each	ch
А	Determine the transfer function of the mechatronic system shown in figure.	
	$R(s) + G_1 + G_2 + G_3 + G_4 + H_1$	
В	Illustrate working of i) Tactile sensor ii) Thermocouple. Enlist four applications for of this sensor	or each
C	Ullustrate with a circuit diagram the working of i) D 2D circuit ii) ADC fue	ancina
Ľ	Approximation	cessive
	Approximation.	

Q3	Solve any Two Questions out of Three10 marks each
А	Two double acting pneumatic cylinders A and B are selected for an industrial
	application. The sequence of movement for piston of the cylinder is proposed as below.
	A+ B+ DelayA- B-
	Develop an electro-pneumatic circuit using 5/2 double solenoid as final directional control valves.
В	Sketch the Bode plots for the following transfer function. Determine phase margin, gain
	margin, phase crossover frequency, gain crossover frequency. Comment on the stability
	of the system.
	$G(s) = \frac{80}{10000000000000000000000000000000000$
	$S(s)^{-} s(s+2)(s+10)$
С	 Develop a ladder logic diagram to implement the process illustrated in Figure. An upcounter must be programmed as part of a batch-counting operation to sort parts automatically for quality control. The counter is installed to divert 1 part out of every 1000 for quality control or inspection purposes. The circuit operates as follows: A star/stop pushbutton station is used to turn the conveyor motor on and off. A proximity sensor counts the parts as they pass by on the conveyor. When a count of 1000 is reached, the counter's output activates the gate solenoid, diverting the part to the inspection line. The gate solenoid is energized for 2 s, which allows enough time for the part to continue to the quality control line. The gate returns to its normal position when the 2 s time period ends. A reset pushbutton is provided to reset the counter manually.
	Parts conveyer Ine Proximity Switch Proximity Science Proximity Science Scie