University of Mumbai Examination 2021 under cluster __(Lead College: RAIT) Examinations Commencing from 1st June 2021 Program: Instrumentation Engineering Curriculum Scheme: Rev2016 Examination: TESemester VI

Course Code: ISC604and Course Name: DSP

Time: 2 hourMax. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	The ROC of a system is the	
Option A:	range in which the signal is free of noise	
Option B:	range of z for which the z transform converges	
Option C:	range of frequency for which the z transform exists	
Option D:	range of frequency for which the signal gets transmitted	
2.	$W_N^{\left(K+\frac{N}{2}\right)} = ?$	
Option A:	W_N^K	
Option B:	$-W_N^K$	
Option C:	W_N^{-K}	
Option D:	+i	
3.	The similarity between the Fourier transform and the z transform is that	
Option A:	Both convert discrete time domain to frequency spectrum domain	
Option B:	Both convert frequency spectrum domain to discrete time domain	
Option C:	Both convert analog signal to digital signal	
Option D:	Both convert digital signal to analog signal	
4.	The direct computation of an N point DFT requires complex multiplication and	
Option A:	N(N-1), N x N	
Option B:	N x N, N(N-1)	
Option C:	2N + 1, 2N	
Option D:	2 N, 2N + 1	
5.	DIT algorithm divides the sequence into	
Option A:	Positive and negative values	
Option B:	Upper higher and lower spectrum	
Option C:	Small and large samples	
Option D:	Even and odd samples	
6.	Radix - 2 FFT algorithm performs the computation of DFT in	
Option A:	N \log_2 Nmultiplications & (N/2) \log_2 Nadditions	
Option B:	(N/2) log Nstages	
Option C:	$(N/2) \log_2 Nmultiplications \& N \log_2 Nadditions$	
Option D:	N/2stages	

7.	Which of the following is not used in the realization of a system		
Option A:	Delay elements		
Option B:	Multipliers		
Option C:	Adders		
Option D:	Subtractors		
8.	For a system function H(s) to be stable		
Option A:	The zeros lie in left half of the s plane		
Option B:	The zeros lie in right half of the s plane		
Option C:	The poles lie in left half of the s plane		
Option D:	The poles lie in right half of the s plane		
9.	The transformation technique in which there is one to one mapping from s-		
	domain to z-domain is		
Option A:	Approximation of derivatives		
Option B:	Impulse invariance method		
Option C:	Bilinear transformation method		
Option D:	Backward difference for the derivative		
10.	For long data filtering following methods are used		
Option A:	Overlap multiply and save method		
Option B:	Overlap add and save method		
Option C:	Overlap subtract and add method		
Option D:	Frequency sampling		
11.	One of the zero of causal linear phase FIR filter lies at $Z = 1/2$. Therefore other		
	zero is at		
Option A:	2		
Option B:			
Option C:	-1		
Option D:	0		
10			
12.	For anti-symmetric filter having even length a zero exists at		
Option A:			
Option B:			
Option C:	Z=1		
Option D:	Z=0		
10			
13.	FIK INTERS are		
Option A:	Recursive type		
Option B:	Non recursive type		
Option C:	Instable		
Option D:			
1 /	Cibbs abanomena can be adread by using the tailer when don't ' ED		
14.	Globs phenomena can be reduced by using technique when designing FIR		
Ontion A:			
Option R:	bilipoor		
Option B:	Ullilitäi fraguanay sempling		
Option C:	requency sampling		

15. For Hanningwindow the main lobe width is equal to	For Hanningwindow the main lobe width is equal to		
Option A: $2\pi/N$	2π/N		
Option B: $4\pi/N$	$4\pi/N$		
Option C: $8\pi/N$	8π/N		
Option D: $12\pi/N$	12π/N		
16. In Bilinear Transformation Method poles are transferred by using	In Bilinear Transformation Method poles are transferred by using		
Option A:			
$s = \frac{Z}{Ts} \left(\frac{Z-1}{Z+1} \right)$			
Option B: $s = \frac{Ts}{2} \left(\frac{Z-1}{Z+1} \right)$			
Option C: $s = \frac{2}{Ts} \left(\frac{Z+1}{Z-1} \right)$			
Option D: $s = \frac{Ts}{2} \left(\frac{Z+1}{Z-1} \right)$			
1/. Which of the following windows has a time domain sequence $\frac{1}{2\pi m}$			
$h(n) = \frac{1}{2} (1 - \cos \frac{2\pi n}{M})$	$h(n) = \frac{1}{2}(1 - \cos \frac{2\pi n}{M})$		
$\frac{2}{\text{Option A: Bartlett window}}$			
Option B: Blackman window	Blackman window		
Option C: Hamming window			
Option D: Hanning window	Hanning window		
18. Recursive least squares (RLS) is an adaptive filte <u>r</u> algorithm that re	ecursively finds		
the coefficients that minimize a			
Option A: weighted linear least squares cost function			
Option B: mean square error			
Option C: unweighted linear least squares cost function	unweighted linear least squares cost function		
Option D: square error			
19 The TMS320C54x has 16-hit auxiliary registers			
Option A: 7			
Option B: 5			
Option C: 8			
Option D: 11	11		
20. The IDLE2 instruction is used to			
Option A: shut down the CPU	shut down the CPU		
Option B: shut down the CPU and on-chip peripherals	shut down the CPU and on-chip peripherals		
Option C: shut down the '54x processor completely	shut down the '54x processor completely		
Option D: power on '54x processor	power on '54x processor		

Q2.		
Α	Solve any Two 5 marks each	
i.	Find DFT of $x(n) = \{1, 2, 1, 0\}$	
ii.	Convert the analog filter with transfer function Ha(s)= $\frac{s+0.1}{(s+0.1)^2+9}$ into a digital filte	er
	using impulse invariant transformation.	
iii.	Compare IIR and FIR Filter	
В	Solve any One 10 marks each	
i.	Draw the architecture of TMS320C54X and explain internal memory organization	1
ii.	Design a Butterworth digital filter using the bilinear transformation. The specification of the desired low-pass filter are $0.9 \le H(\omega) \le 1; 0 \le \omega \le \pi/2$ $ H(\omega) \le 0.2; 3\pi/4 \le \omega \le \pi$	'he

Q3.	Solve any Two Questions out of Three	10 marks each
А	An LTI system is described by the equation $y(n)+2y$ the Cascade and parallel realization structure of the system.	y(n-1)-y(n-2) = x(n) Determine system
В	Design a digital FIR low pass filter using rectangula of $w(n)$ and with a cutoff frequency of 1.2 rad/sec.	r window by taking 9 samples
С	Compute the DFT of the sequence $x(n) = \{2,2,2,2, algorithm\}$	1,1,1,1} by Radix 2 DIF-FFT