University of Mumbai

Examination 2020 under cluster VESIT, Chembur (Lead College: A. P. Shah

Institute of Technology (APSIT), Thane)

Program: Electronics and Telecommunication

Curriculum Scheme: R2016

Examination: TE Semester VI

Course Code: ECC 604 and Course Name: Image Processing and Machine Vision

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Which of the following color models is used for printers?
Option A:	СМҮК
Option B:	RGB
Option C:	RCB
Option D:	CMR
2.	What are the basic necessary quantities that are used to describe the quality of a chromatic light source?
Option A:	Chrominance and wavelength
Option B:	Wavelength and frequency
Option C:	Radiance, brightness and luminance
Option D:	Contrast and dullness
3.	128X128 image with 64 gray levels requiresbits of storage.
Option A:	4096
Option B:	8192
Option C:	12288
Option D:	98304
4.	To make the central Fourier spectrum, which operation is carried out on the input image.
Option A:	Rotation
Option B:	Scaling image by factor 2
Option C:	Multiplying image by $(-1)^{(x+y)}$ where x, y are coordinates of pixel.
Option D:	Adding 128 to each pixel
5.	Following statement is true for the discrete cosine transform except
Option A:	Has real valued basis matrix
Option B:	Provides best energy compaction
Option C:	Does not provide image compression
Option D:	Is widely used in JPEG images
6.	Which of the following is a 4-point DFT matrix?
Option A:	$F = \begin{bmatrix} +1 + 1 + 1 + 1; +1 - i - 1 + i; +1 + 1 - 1 + i; 1 - 1 - 1 \\ -i \end{bmatrix}$

Option B:	F = [+1 + 1 + 1 + 1; +1 - i - 1 + i; +1 + 1 + 1 + i; -1 - 1 - 1 - 1 - i]
Option C:	F = [+1 + 1 + 1 + 1; +1 + i - 1 - i; +1 + 1 - 1 - i; 1 - 1 - 1]
Option D:	$\begin{array}{c} +i \\ F = \left[+1 + 1 + 1 + 1; +1 - i - 1 + i; -1 + 1 - 1 + i; +1 - 1 + 1 \right] \end{array}$
	- <i>i</i>]
7.	What is the sum of all the components of a normalized histogram?
Option A:	-1
Option B:	0
Option C:	Size of image
Option D:	
8.	The response of the smoothing lineer spatial filter is
Option A:	The response of the smoothing linear spatial filter is Sum of image pixel in the neighborhood filter mask
Option B:	Difference of image in the neighborhood filter mask
Option C:	Product of pixels in the neighborhood filter mask
Option D:	Average of pixels in the neighborhood of filter mask
Option D.	
9.	Correction of power law response is called
Option A:	Alpha correction
Option B:	Gamma correction
Option C:	Beta correction
Option D:	Pixel correction
*	
10.	Histogram equalization on already Histogram equalized image will produce:
Option A:	Improvement in quality of an image
Option B:	Degrade quality of an image
Option C:	No change in quality of an image
Option D:	Blurring of an image
11.	Which of the following is the valid response when we apply a first derivative?
Option A:	Non-zero at flat segments
Option B:	Zero at the onset of gray level step
Option C:	Zero in flat segments
Option D:	Zero along ramps
12.	To set the average value of an image zero, which of the following coefficients
12.	should be 0 in the frequency domain representation of an image?
Option A:	F(0, 0)
Option A: Option B:	F(0, 1)
Option D:	F(1, 0)
Option D:	F(1, 0) F(1, 1)
13.	In morphological operations, the Structuring element SE is viewed as
Option A:	Correlation mask
Option B:	Convolution mask
Option C:	Low pass filter
Option D:	High pass filter

1.4	Which encyster is used to detect isolated naints in a smantation?
14.	Which operator is used to detect isolated points in segmentation?
Option A:	Laplacian operator
Option B:	Prewitt operator
Option C:	Sobel operator
Option D:	Robert cross gradient
15.	Following are various type of mean filters except
Option A:	Arithmetic mean filter
Option B:	Geometric mean filter
Option C:	Sequence mean filter
Option D:	Harmonic mean filter
16.	What is an output image after applying a contra harmonic mean filter on the input
	image?
Option A:	Degraded image
Option B:	Original image
Option C:	Restored image
Option D:	Plane image
17.	Fourier approach forconcept: convert 2D spectrum into 1D graphs.
Option A:	Texture Descriptor
Option B:	Regional Descriptor
Option C:	Parametric Descriptor
Option D:	Topological Descriptor
18.	Which of the following is the useful descriptor of a boundary, whose value is
	given by the ratio of length of the major axis to the minor axis?
Option A:	Radius
Option B:	Perimeter
Option C:	Area
Option D:	Eccentricity
19.	In object recognition, the sensed object properties are called as
Option A:	Classes
Option B:	Patterns
Option C:	Labels
Option D:	Objects
20.	The original support vector classifier was developed for
Option A:	Non-linearly separable classes
Option B:	Linear separation of two classes
Option C:	Non-separable classes
Option D:	Multi-class classification

Q.2 A	Solve any Two	5 marks each
i.	Justify DCT is real and orthogonal.	
ii.	Draw and explain fundamental steps in digital image processing	g.

iii.	Gener	ate Haa	ar trans	form	matrix	for N	=2.				
Q.2. B	Solve any One 10 marks each										
i.	Perform histogram equalization for the image shown below and give the equalized image.										
	4	4	4	4	4						
	4	2	5	4	3						
	3	5	5	5	3						
	3	4	5	4	3						
	4	4	4	4	4						
								_			
ii.	-			-	ige usi	ng sp	lit and	l mer	ge alg	gorithn	n. Predicate:
	T1 = 1	00 and	r			1	1			T 1	
			10	20	200	222	20	10	200	222	
			10	20	200	222	20	10	200	222	
			30	40	130	120	200	222	130	120	
			30	40	130	120	200	222	130	120	
			130	120	10	20	20	10	10	20	
			130	120	10	20	20	10	10	20	
			30	40	130	120	10	20	200	222	
			30	40	130	120	10	20	200	222	

i. Write a short note on Support Vector Machine. ii. Explain Statistical Texture description method. iii Find chain code and shape number using 8 code connectivity for the following image. Arrow shows the starting point for chain code.	i.
iii Find chain code and shape number using 8 code connectivity for the	
	ii.