07/08_EP-II_FE_Sem II (R-19)_Inst Name

University of Mumbai

	-	
Ą	* Required	
(Sub_PART-A	
1.	*	
	Grating eler	ment of a diffraction grating is defined as the
	Mark only on	e oval.
	Oum of	slit width and opaque space width
	Sulli oi	siit width and opaque space width
	differen	ice of slit width and opaque space width
	square	of the slit width
	opaque	space width
2.	*	
	1	A parallel beam of monochromatic light of wavelength 5000A ⁰ is normally
		incident on a single slit. If the angle at which the first order minima observed is 30°, What is the width of the slit?
	Option A:	$2.6 \times 10^{-3} \text{m}$
	Option B:	$2X10^{-4}cm$
	Option C:	$3.5 \times 10^4 \text{m}$
	Option D:	$1X10^{-4}cm$
	Mark only on	e oval.
	Option A	A:
	Option I	
	Option (
	Option I	D:

3. *

	Deduce the missing orders in a diffraction pattern through grating if the slit widths are 0.14mm and they are 0.7mm apart.
	Mark only one oval.
	3rd, 6th, 9th etc. order spectra
	2th, 4th, 6th etc. order spectra
	6th, 12th, 18th etc. order spectra
	4th, 8th, 12th etc. order spectra
4.	*
	In holography, which of the following optical phenomena are involved?
	Mark only one oval.
	interference, refraction
	interference, diffraction
	reflection, diffraction
	polarization, diffraction
5.	*
	In Graded index fibre, the refractive index of the core from the axis of the fibre.
	Mark only one oval.
	sharply increases
	abruptly changes
	gradually increases
	gradually decreases

6. *

	In an optical fibre, the core material has refractive index 1.6 and refractive index of clad material is 1.3. What is the value of critical angle?
Option A:	50.60
Option B:	54.30
Option C:	65.50
Option D:	53.40

Mark only one oval.		
Option A:		
Option B:		
Option C:		
Ontion D:		

7. *

The numerical aperture of an optical fibre is 0.5 and refractive index of the core is 1.54. Find the refractive index of cladding.

Mark only one oval.

1.457
2.623

1.007

1.892

For a solenoidal vector point function, which one of the following is true?
$\nabla \times V=0$
$\nabla X V = \frac{\rho}{\xi_0}$
$\nabla . \mathbf{V} = \frac{\rho}{\xi_0}$
$\nabla \cdot \mathbf{V} = 0$

Option A:
Option B:
Option C:
Option D:

9. *

In Gauss law of magnetism, $\nabla_{\omega} \mathbf{B} = 0$ signifies that

Mark only one oval.

there is	no dipole in magnetism
there is	no monopole in magnetism
there is	no monopole in electrostation
there is	no dipole in electrostatics

11.

dilated

contracted

doubled

	If $\vec{D} = \rho_0 z \hat{k}$, the value of Charge density will be	
Option A:	$ ho=2 ho_0$	
Option B:	$ ho= ho_0^2$	
Option C:	$ ho = ho_0$	
Option D:	$ \rho = \rho_0 z $	

option c. $p - p_0$
Option D: $\rho = \rho_0 z$
Mark only one oval.
Option A:
Option B:
Option C:
Option D:
*
The length of a rod in a moving frame will be to the observer in a
rest frame.
Mark only one oval.
unchanged

	At what speed the mass of an object will be three times of its value at rest.
Option A:	$v = 2.83 \times 10^8 \ m/sec$
Option B:	$v = 1.67 \times 10^8 \ cm/sec$
Option C:	$v = 3.92 \times 10^7 \ m/sec$
Option D:	$v = 0.67 \times 10^{-8} \ m/sec$

	Option	A:
--	--------	----

	Ontion	р.
(Option	B:

13.

Which of the following is not an example for bottom-up approach of synthesizing nanomaterials?

Mark only one oval.

	So	l-ae	el
	00	· y·	_

Molecular	self-assembly
Wioiccular	Sch assembly

	Ball	mil	ling
--	------	-----	------

	AFM works under the principle of
	Mark only one oval.
	Boltzmann distribution law
	Pyroelectric effect
	Hook's law
	magnetostriction effect
15.	*
	Compared to bulk material, nanomaterial has Mark only one oval.
	high volume/surface ratio
	high surface/volume ratio
	high size/volume ratio
	high density/volume ratio

This content is neither created nor endorsed by Google.

Google Forms