University of Mumbai Examination 2021 under cluster 9 (FAMT) Examinations Commencing from 1st June 2021

Program: Mechanical Engineering Curriculum Scheme: 2016 Examination: TE Semester VI Course Code: MEC603 and Course Name: Finite Element Analysis

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	Which of the following is the advantage of EEM?
I.	EEM is an approximation and results are not correct
Option A:	PEW is an approximation and results are not correct
Option B:	Results depend on the experience and judgment of the designer
Option C:	Solve and analyze the complex geometry problems
Option D:	High end hardware is needed
2	The process of stitching of all elements together is called as
Z.	A seemblase
Option A:	Assemblage
Option B:	
Option C:	
Option D:	Iraction
2	How David a Dita mathed can be differentiated from other symposical matheda?
J.	How Rayleigh-Ritz method can be differentiated from other numerical methods?
Option A:	Weighted residue
Option B:	Weak form type
Option C:	Non-weak form type
Option D:	Variational
4.	What is the axial rigidity of an axial bar of length 'L' with a uniform cross sectional Area 'A' and Modulus of Elasticity 'E'?
Option A:	EA
Option B:	E/A
Option C:	EA/L
Option D:	A/E
•	
5.	What is number of internal nodes of a linear element?
Option A:	0
Option B:	2
Option C:	1
Option D:	3
6.	What is the order of a 1D quadratic element?
Option A:	1
Option B:	2
Option C:	3
Option D:	4

7.	What is the balance of secondary variables at a given node in the absence of
	external secondary variable?
Option A:	One
Option B:	Zero
Option C:	Not equal to zero
Option D:	Exactly two
8.	What is the exact solution for ODE $3y''-y' = 0$; $0 \le x \le 1$? Boundary Conditions: $y(0) = 0$, $y(3) = 1$
Option A:	$-0.6814 + 0.6814e^{x}$
Option B:	$-0.5814 + 0.5814e^{x/3}$
Option C:	$-0.5814 + 0.5814e^{x}$
Option D:	$-0.6814e^{x/3} + 0.6814e^{x/3}$
9.	According to Lagrange polynomial the shape function at node one of a five
	noded element is given by
Option A:	$\Phi_1 = \frac{(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}$
Option B:	$ \begin{array}{c} (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1 - x_5) \\ \\ x & (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1 - x_5) \end{array} $
Option D.	$\Phi_1 = \frac{1}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_1 - x_5)}$
Option C:	$\Phi_1 = \frac{(x - x_2)(x - x_3)(x - x_4)(x - x_5)}{(x - x_3)(x - x_4)(x - x_5)}$
Ortion Di	$\frac{(x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_5 - x_1)}{(x_1 - x_2)(x_1 - x_2)(x_1 - x_2)(x_1 - x_2)}$
Option D:	$\Phi_1 = \frac{(x - x_2)(x - x_3)(x - x_4)(x - x_5)}{(x_1 - x_2)(x_1 - x_2)(x_1 - x_4)(x_1 - x_5)}$
10.	In theelement, the load is assumed to act uniformly over the entire cross-
	section.
Option A:	Truss
Option B:	Plane strain
Option C:	Thin shell
Option D:	Thick shell
11.	The global stiffness matrix is always
Option A:	Square, un-symmetric, non-singular and positive definite.
Option B:	Square, symmetric, non-singular and negative definite.
Option C:	Non-square, non-symmetric, non-singular and positive definite.
Option D:	Square, symmetric, singular and positive definite.
12.	In a structure, if there are 2 fixed dof and the size of global stiffness matrix is 6 x
	6, then as per elimination approach the storing stiffness matrix has the order of
Option A:	
Option B:	
Option C:	4 X 4
Option D:	
12	Serendinity elements are element with
1J.	Only internal node
	Only internal nodes
Option B:	Only external nodes
Option C:	Both internal and external nodes
Option D:	Unly nodes at boundary
1	

14.	Patch test is performed to ensure
Option A:	Formulation Criteria
Option B:	Discretization criteria
Option C:	Convergence criteria
Option D:	Divergence Criteria
1	
15.	Which error is caused due to truncation
Option A:	Discretization error
Option B:	Formulation error
Option C:	Numerical error
Option D:	Convergence error
16.	In a CST element
Option A:	Displacement is constant
Option B:	Displacement is linear
Option C:	Displacement is quadratic
Option D:	Displacement is cubic
-	-
17.	The dimension of the Stress-Strain Relation (D) matrix for 2D analysis is
Option A:	2x2
Option B:	3x3
Option C:	4x4
Option D:	6x6
18.	The total DOF of a CST element is
Option A:	3
Option B:	4
Option C:	6
Option D:	8
-	
19.	The size of the element mass matrix of a CST element for the plane stress
	condition is
Option A:	2 x 2
Option B:	4 x 4
Option C:	6 x 6
Option D:	8 x 8
20.	represents a set of relative displacements in various degrees of freedom.
Option A:	Mode shape
Option B:	Eigenvalues
Option C:	Eigenvectors
Option D:	Characteristic equation

Q2	Solve any Two Questions out of Three (10 marks each)
(20 Marks)	
А	Solve the following differential equation and determine y at x=0.5 using Galerkin
	Method.
	$\frac{d^2y}{dx^2} - 10x^2 - 5 = 0$ in the domain $0 \le x \le 1$
	Boundary conditions are: $y(0) = 0$ and $y(1) = 0$
	Determine the nodal displacement and stresses in each element. Consider the cross-sectional area of each member of truss as 100 mm ² and modulus of elasticity as 100 GPa. 25 kN
В	1 2 75 mm 125 mm 100 mm 3
С	The nodal coordinates of a three node triangular element are $(4, 6)$, $(13, 8)$ and $(10, 12)$. Determine the shape functions at a point P $(9, 8)$.

03	Solve any Four out of Six (5 marks each)
(20 Marks)	Solve any rour out of Six (5 marks each)
A	Solve the following governing differential equation using least square method.
	$3\frac{dy}{dx} - x = 0$ in the domain $0 \le x \le 1$
	Boundary condition is: $y(0) = 1$
В	Solve the following Governing Differential Equation considering the two linear elements by directly using Element Matrix Equation (Avoid its development) for displacements and forces at nodes. Take A = 0.1m^2 , E = 100GPa. External force, P = 10 kN as shown in figure 1. $\frac{d}{dx} \left[AE \frac{du}{dx} \right] = 0 0 \le x \le 12cms$
	Fig 1. Horizontal Bar subjected to axial load
	Determine the nodal displacement for the step bar shown in figure.
С	Consider, $L1 = L2 = 100$ mm, $A1 = 100$ mm2, $A2 = 50$ mm2, $E1 = E2 = 100$
	GPa, and $P = 5,000$ N.

D	Explain Jacobian Matrix
E	A iso parametric four node quadrilateral element ABCD has coordinates A(10,5), B(12,6), C(15,8) and D(8,4). Determine the Cartesian coordinate of a point P which has local coordinate $\xi = 0.8$ and $\eta = 0.2$
F	Determine the natural frequency of vibration using consistent mass matrix with one bar element. An aluminum bar has a uniform cross-section, length 1 m and made up of a material having $E = 70 \times 10^9 \text{ N/m}^2$ and $\rho = 2700 \text{ kg/m}^3$.