Program: Instrumentation Engineering Curriculum Scheme: Rev2019 Examination: SE Semester IV Course Code: ISC403 and Course Name: Signal Conditioning Circuit Design Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The ideal opamp has the following characteristics
Option A:	$R_i = \infty, A_v = \infty, R_0 = \infty$
Option B:	$\mathbf{R}_{i}=0, \mathbf{A}_{v}=\infty, \mathbf{R}_{0}=\infty$
Option C:	$\mathbf{R}_{i} = \infty, \mathbf{A}_{v} = \infty, \mathbf{R}_{0} = 0$
Option D:	$R_{i} = \infty, A_{v} = 0, R_{0} = 0$
-	
2.	The inverting opamp as shown in figure has open loop gain of 2×10^5 , Closed loop gain will be
Option A:	2×10 ⁵
Option B:	-10
Option C:	10
Option D:	-11
3.	A comparator with a Schmitt trigger has
Option A:	two trigger levels.
Option B:	a fast response.
Option C:	a slow response.
Option D:	one trigger level.
4.	Determine the output voltage for the following circuit. $-4 V \circ - V_{OUT}$ 3 v - I
Option A:	+7

Option B:	-7
Option C:	+V _{sat}
Option D:	-V _{sat}
5.	The circuit shown in the figure is that of
Option A:	Non-Inverting
Option B:	Inverting
Option C:	Oscillator
Option D:	Schmitt Trigger
6.	One input terminal of high gain comparator circuit is connected to ground and a
	sinusoidal voltage is applied to the other input. The output of comparator will be
Option A:	Sine Wave
Option B:	Full rectified Sine Wave
Option C:	Half rectified Sine Wave
Option D:	Square Wave
7	
	Typically, an instrumentation amplifier has an external resistor used for
Option A:	establishing the input impedance
Option B:	setting the voltage gain
Option D:	interfacing with an instrument
Option D.	
8	A peak detector consists of
Ontion A	a comparator a transistor and a capacitor
Option R:	a comparator, a diode, and a capacitor
Option C:	a comparator, a diode, and an inductor
Option D:	an integrator, a diode, and a capacitor
option D.	
9.	A monostable multivibrator has $R = 100k\Omega$ and the time delay $T = 100ms$,
	calculate the value of C?
Option A:	1μF
Option B:	0.9µF
Option C:	9µF
Option D:	0.09µF
10.	If the differential voltage gain and the common mode voltage gain of a differential
	Amplifier are 48 dB and 2 dB respectively, then it's common mode Rejection Ratio
	is
Option A:	48dB
Option B:	50dB
Option C:	46 dB
Option D:	23dB

11.	A 22-kohm resistor and a 0.02 - μ F capacitor are connected in series to a 5-V
	source. How long will it take the capacitor to charge to 3.4 V?
Option A:	0.4ms
Option B:	0.5ms
Option C:	0.6ms
Option D:	0.7ms
12.	What is the major advantage of the R/2R ladder DAC as compared to a binary- weighted-input DAC?
Option A:	Its operation is much more easily analyzed.
Option B:	The virtual ground is eliminated and the circuit is therefore easier to understand
	and troubleshoot.
Option C:	It uses only two different resistor values.
Option D:	It has fewer parts for the same number of inputs.
13.	A RTD has a resistance of 2Ω at 0° C and 3Ω at 100° C. What will be the resistance when temperature rises to 300° C.
Option A:	4Ω
Option B:	5Ω
Option C:	1Ω
Option D:	Will remain same
14.	When the reference junction is the same temperature as the measurement junction in a thermocouple circuit, the output voltage (measured by the sensing instrument) is
Ontion A.	Unreliable
Option R:	Neisy
Option C:	Roverse polerity
Option D:	
Option D.	
15	The draw healts of starin sources and
15.	The draw backs of strain gauges are:
	S1: Low fotigue life
	S1. Low largue life S2: They are expensive, brittle and sensitive to temperature
	S2: Poor linearity
	Choose the correct one
Ontion A:	SLonly
Option R.	S1 and S3
Option C:	S2 and S3
Option D	S1 and S2
Option D.	
16	Find the strain that results from a tensile force of 1000 N applied to a 10-m
10.	aluminum beam having a cross-sectional area. Solution The modulus of elasticity is 6.89×10^{10}
Option A.	3 63µm/m
opusiti.	

Option B:	36.3µm/m
Option C:	.275µm/m
Option D:	2.75m/µm
17.	Which signal conditioning circuit is most suitable for photovoltaic detectors
Option A:	Inverting Amplifier
Option B:	Voltage divider
Option C:	I to V converter
Option D:	Wheatstone Bridge
18.	What type of interface does a DAQ (Data acquisition) hardware creates?
Option A:	Interface between two similar signals
Option B:	Interface between a computer and signal
Option C:	Interface between two dissimilar signals
Option D:	Interface between two similar hardware
19.	Sample and hold circuit are used in
Option A:	Analog to Digital modulation
Option B:	Digital to analog modulation
Option C:	Pulse position modulation
Option D:	All of the above
20.	Find out the gain value by which each input of the averaging amplifier is
	amplified ?(Assume there are four inputs)
Option A:	0.5
Option B:	0.25
Option C:	1
Option D:	

Q2.	
	Solve any four -5 marks each.20 marks
i.	Determine the output voltage for the given figure
	$ \begin{array}{c} 5 \ K\Omega \\ 2 \ V \\ 1 \ K\Omega \\ 8 \ K\Omega \end{array} $
ii.	Signal Conditioning analysis shows that the following equation must relate output voltage to input voltage: Design a circuit to implement following equation. $V_{out} = -(3V_1 + 2V_2)$
iii.	Derive the expression for output of Differentiator with the help of labelled
	diagram, Draw the waveform for triangular wave input.
iv.	Design an Monostable Multivibrator using IC 555 for 10KHz frequency and 75% duty cycle.

v.	A potentiometric displacement sensor is to be used to measure work-piece motion from 0 to 10 cm. The resistance changes linearly over this range from 0 to $1KO$
	Develop signal conditioning to provide a linear, 0V to 10V output.
vi.	Draw and explain the signal conditioning associated with Thermistor.

Q3.	
	Solve any Two-10 marks each. 20 marks
i.	Draw and explain principle and construction of strain gauge. What is the signal conditioning associated with it.
ii.	Derive the expression for output voltage of Precision Full wave Rectifier . Explain the working with circuit diagram and waveforms.
iii.	Derive the expression for output voltage of R-2R Digital to Analog with the help of labelled diagram and suitable example.