University of Mumbai Examination June 2021

Examinations Commencing from 1st June 2021

Program: Electronics & Telecommunication Curriculum Scheme: R2019

Examination: SE Semester IV

Course Code: ECC 403 and Course Name: Linear Integrated Circuit
Time: 2 hours

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions ar		
Q1.	compulsory and carry equal marks		
1.	An ideal op-amp requires infinite bandwidth because		
Option A:	Signals can be amplified without attenuation		
Option B:	Output common-mode noise voltage is zero		
Option C:	Output voltage occurs simultaneously with input voltage changes		
Option D:	Output can drive infinite number of devices		
2.	In an inverting amplifier using op-amp		
Option A:	The input is connected to the non-inverting terminal via resistor and inverting terminal is kept floating		
Option B:	The input is connected to the non-inverting terminal via resistor and inverting terminal is grounded		
Option C:	The input is connected to the inverting terminal via resistor and non-inverting terminal is kept floating		
Option D:	The input is connected to the inverting terminal via resistor and non- inverting terminal is grounded		
	terminal is grounded		
3.	For the difference amplifier shown below, the output voltage is given by $\begin{array}{c} v_2 \\ v_1 \\ \hline \end{array}$		
Option A:	$v_0 = v_1 + v_2$		
Option B:	$v_0 = v_1 - v_2$		
Option C:	$v_0 = -v_1 + v_2$		
Option D:	$v_0 = -(v_1 + v_2)$		

4.	A current to voltage converter converts		
Option A:	Input current to proportional output voltage.		
Option B:	Input current to proportional output voltage. Input current to proportional output current.		
Option C:	Input voltage to proportional output voltage.		
Option D:	Input voltage to proportional output current.		
5.	The filter shown below has R_1 = 27 k Ω , R_F = 15.8 k Ω , R_2 = R_3 = 33 k Ω , C_2 = C_3 = 0.0047 μF is a		
	v_{in} C_2 R_3 R_4 R_5 R_6 R_7 R_8 R_8 R_8 R_8 R_8		
Option A:	High Pass filter with cut off frequency ≈ 1 kHz		
Option B:	High Pass filter with cut off frequency ≈ 10 kHz		
Option C:	Low Pass filter with cut off frequency ≈ 1 kHz		
Option D:	Low Pass filter with cut off frequency ≈ 10 kHz		
Option D.	How rass litter with cut off frequency to kitz		
6.	For a Wein Bridge oscillator, the RC networks in the feedback circuit have values of their resistances $R = 3.3 \text{ k}\Omega$ and capacitances $C = 0.047 \mu\text{F}$,		
Option A:	Its frequency of oscillation is ≈ 1 kHz		
Option B:	Its frequency of oscillation is ≈ 3.030 kHz		
Option C:	Its frequency of oscillation is ≈ 3.3 kHz		
Option D:	Its frequency of oscillation is ≈ 480 Hz		
орион В.	Tes frequency of oscillation is 4400 fiz		
7.	For a non inverting comparator, input signal and reference voltage are given to		
Option A:	inverting terminal of the op-amp through separate resistors		
Option B:	non-inverting terminal of the op-amp through separate resistors		
Option C:	inverting terminal and non-inverting terminal of the op-amp respectively		
Option D:	non-inverting terminal and inverting terminal of the op-amp respectively		
0	An Investina Calmeitt tui agan averl		
8.	An Inverting Schmitt trigger employs		
Option A:	Only Negative feedback		
Option B:	Only Positive feedback		
Option C:	Both Negative and Positive feedback No feedback		
Option D:	INO ICCUDACE		
9.	A square waveform having ON time greater than its OFF time is fed as input to an integrator. The resulting output of the integrator is called		
Option A:	Triangular waveform		
Option B:	Sawtooth waveform		
Option C:	Inverted Square waveform		

Option D:	Sine waveform		
•			
10.	The reference voltage of upper comparator used in functional block diagram of IC 555 is		
Option A:	1/5 V _{CC}		
Option B:	1/3 V _{CC}		
Option C:	2/3 V _{CC}		
Option D:	2/5 V _{CC}		
opusii 2 ·			
11.	The output pulse width of a monostable multivibrator using 555 where R and C are the external components is		
Option A:	RC		
Option B:	1.1 RC		
Option C:	(2/3) RC		
Option D:	(1/3) RC		
opusii 2 ·			
12.	In an Astable multivibrator if R_A =25K Ω , R_B =33k Ω , C=0.5 μ F, calculate discharging time of capacitor waveform		
Option A:	11.43 ms		
Option B:	20 ms		
Option C:	12.5 ms		
Option D:	10 ms		
13.	In IC7805 the output voltage is		
Option A:	5 V		
Option B:	0 V		
Option C:	8 V		
Option D:	7 V		
14.	For High voltage, High current voltage regulator using IC 723, output voltage and output currents respectively have one of the following correct values.		
Option A:	Less than 7 V, greater than 150 mA		
Option B:	Less than 7 V, less than 150 mA		
Option C:	7 to 37 V, greater than 150 mA		
Option D:	7 to 37 V, less than 150 mA		
-			
15.	Output voltage of LM317 can be adjusted from		
Option A:	-1.2 V to 37 V		
Option B:	-1.2 V to -37 V		
Option C:	1.2 V to 37 V		
Option D:	1.2 V to -37 V		
16.	Which one of these ICs is a Voltage Controlled Oscillator?		
Option A:	IC 565		
Option B:	IC 566		
Option C:	IC 555		
Option D:	IC 723		
17.	For a Phase Locked Loop which of the following is true?		
Option A:	Lock in range > Capture range		

Option B:	Lock in range < Capture range	
Option C:	Lock in range = Capture range	
Option D:	Lock in range = half of Capture range	
18.	An integrator circuit	
Option A:	uses a resistor in its feedback circuit.	
Option B:	uses an inductor in its feedback circuit.	
Option C:	uses a capacitor in its feedback circuit.	
Option D:	uses a diode in its feedback circuit.	
19.	The instrumentation amplifier shown in diagram has $R_1=R_F=25~\mathrm{k}\Omega,~R_2=10~\mathrm{k}\Omega,$ and R_3 varying from $100~\Omega$ to $1~\mathrm{k}\Omega,$ the voltage gain of the amplifier varies from $v_2 = \frac{R_1}{R_2}$	
Ontion A.	10 to 100	
Option A:	10 to 100	
Option B: Option C:	21 to 201	
Option C:	1 to 101	
Option D:	2 to 202	
20.	Which of these circuits clips one half cycle of a sinusoidal waveform?	
Option A:	Comparator	
Option B:	Schmitt Trigger	
Option C:	Half Wave Precision Rectifier	
Option D:	Peak detector	
Option D.	1 can detector	

Q2	Solve any Two Questions out of Three	(10 marks each)
A	Design a second order low pass Butterworth filter for cut off frequency of 10 kHz.	
В	With the help of a functional block diagram explain the working of PLL IC 565.	
С	Design an astable multivibrator using IC 555 for frequency 1 kHz & duty cycle 50%. Assume $C=0.1\mu F$.	
Q3	Solve any Two Questions out of Three	(10 marks each)
A	Design a voltage regulator using 723 to deliver an outp current upto 50 mA.	ut voltage of 15 V and load

В	With help of a neat circuit diagram and voltage transfer characteristics explain the working of a non- inverting Schmitt trigger.	
C	Design a circuit to perform $Vo = 3V_2 - 6V_1$. Explain the working of the circuit.	