University of Mumbai Examination 2021 under cluster 9 (FAMT) Examinations Commencing from 1st June 2021 Program: Mechanical Engineering Curriculum Scheme: Rev 2019 Examination: SE Semester IV

Course Code: MEC402 and Course Name: Fluid Mechanics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	
	If liquid has specific gravity 0.2, then what is weight density of the liquid?
Option A:	200 N/m ³
Option B:	2000 N/m ³
Option C:	1962 N/m ³
Option D:	1.962 N/m ³
2.	A fluid in which shear stress than the yield value & shear stress is not
	proportional to the rate of shear strain is known a
Option A:	more, I hyxotropic fluid
Option B:	less, Thyxotropic fluid
Option C:	more, Ideal plastic fluid
Option D:	less, Ideal plastic fluid
3.	The magnitude of the buoyant force can be determined by
Option A:	Archimedes' principle
Option B:	Newton's second law of motion
Option C:	Principle of moments
Option D:	Principle of energy
4.	In dimensional analysis the Buckingham's π -theorem is widely used and expresses the resulting equation in terms of
Option A:	the repeating variables
Option B:	geometric, kinematic and dynamic variables
Option C:	(n - m) dimensionless parameters
Option D:	n dimensionless parameters
•	
5.	A gives the path of one particular particle at successive instants of time, whereas indicates the direction of a number of particles at the same instant
Option A:	path line, stream line
Option B:	path line, energy line
Option C:	stream line, Streak line
Option D:	path line, vertical line
6	Find the velocity at a point $(1, 1, 2)$ after 1 sec. for a 3D flow given by $y = yz$, $y = y$
0.	The die velocity at a point $(1, 1, 2)$ after 1 sec. for a 5D flow given by $u = yZ$, $v =$

	xz - t, $w = xy + t m/s$
Option A:	1
Option B:	2
Option C:	3
Option D:	0.5
•	
7.	In method equations of motion are very difficult to solve and the motion is hard to understand.
Option A:	Eulerian Method
Option B:	Langrangian Method
Option C:	viscous method
Option D:	pressure method
8.	is not a assumptions of Bernoulli's equation
Option A:	The liquid is ideal
Option B:	The flow is steady and continuous
Option C:	The liquid is incompressible
Option D:	Fluid is in static condition
9.	The term $V^2/2g$ is known as
Option A:	kinetic energy
Option B:	pressure energy
Option C:	kinetic energy per unit weight
Option D:	Potential energy
10.	In which of the following measuring devices Bernoulli's equation is not used:
Option A:	Venturimeter
Option B:	Orificemeter
Option C:	Pitot tube
Option D:	Manometer
11.	F.dt = $d(mv)$ This equation is called as
Option A:	Euler momentum equation
Option B:	Navier stokes equation
Option C:	Impulse-momentum equation
Option D:	Energy equation
12.	The co-efficient of discharge of an Orificemeter is that of a Venturimeter.
Option A:	equal to
Option B:	smaller than
Option C:	much more than
Option D:	depend on working condition
13.	What is fully developed flow?
Option A:	Where pressure is constant along flow direction
Option B:	Where velocity is constant along flow direction
Option C:	Where force is constant along flow direction
Option D:	Where temperature is constant along flow direction

14	Find Reynolds number if velocity of fluid is 2 m/s and density of fluid 800 kg/m ³
11.	and Viscosity 0.2 N.s/m^2 is flowing through 0.25 m diameter pipe.
Option A:	2000
Option B:	200
Option C:	20
Option D:	2
15.	In Navier stokes equation consider following forces
Option A:	Pressure and gravitational forces
Option B:	Viscous, gravitational and pressure forces
Option C:	Viscous, gravitational and surface tension forces
Option D:	Pressure and viscous forces
16.	Potential, kinetic and pressure heads are considered for
Option A:	Energy gradient line
Option B:	Potential gradient line
Option C:	Hydraulic gradient line
Option D:	Pressure gradient line
17.	When the pipes are connected in parallel, the total loss of head
Option A:	is equal to the sum of the loss of head in each pipe
Option B:	is same as in each pipe
Option C:	is equal to the reciprocal of the sum of loss of head in each pipe
Option D:	is equal to the difference of the losses of head in pipes
18.	In a pipe flow the minor losses are those
Option A:	which depend on the length of the pipeline
Option B:	caused by friction and are thus also called friction losses.
Option C:	which have a large magnitude
Option D:	which are caused on account of total disturbance produced by such fittings as
	valves, bends, etc
19.	Which of following statements is correct for bluff bodies?
Option A:	The total drag is considerably larger as compared to that for streamlined bodies
Option B:	No friction drag act on the bodies
Option C:	The total drag is much less as compared to that for streamlined bodies
Option D:	Bodies are coincided with the stream line
20	
20.	Boundary layer on a flat plate is called laminar boundary layer if
Option A:	Reynolds number is less than 2000
Option B:	Reynolds number is less than 4000
Option C:	Reynolds number is less than 5×10^3
Option D:	Reynolds number is more than $5 \times 10^{\circ}$

Q2. (20 Marks)	Solve any Four Questions out of Six (5 marks each).
Α	Write short notes on types of fluids
В	Define stream function and velocity potential function.
С	A venturimeter with 150 mm diameter at inlet and 100 mm at throat is laid with its axis horizontal and is used for measuring the flow of oil of sp. gr. 1. The oil mercury differential manometer shows a gauge difference of 200 mm. Calculate the discharge. Assume the co-efficient of meter as 0.98.
D	An oil of viscosity 1 poise and relative density 0.9 is flowing through a circular pipe of diameter 50 mm and of length 300 m. The rate of flow of liquid is 0.0035 m^3 /s. Find the pressure drop in a length of 300 m and shear stress at the wall.
E	The main pipe divides into two parallel pipes which again form one pipe. The data is as follows : First parallel pipe; Length = 900 m; diameter = 0.7 m; Second parallel pipe : Length = 900 m; diameter = 0.5 m; Coefficient of friction for each parallel pipe = 0.0045. If the total rate of flow in the main is 1.8 m^3 /s find the rate of flow in each parallel pipe.
F	Write short note on boundary layer separation.

Q3.	Solve any Two Questions out of Three (10 marks each).
(20 Marks)	
А	Determine the total pressure and centre of pressure on a plane rectangular surface of 1 m wide and 3 m deep when its upper edge is horizontal and (a) coincides with water surface (b) 2 m below the free water surface.
В	Deive Eular's equation of motion in cartesian coordinate system.
С	A two-dimensional flow field is given by $\varphi = 3xy$, determine: (i) The stream function. (ii) The velocity at L(2, 6) and M (6,6) and the pressure difference between the points L and M.