University of Mumbai

Examination June 2021

Examinations Commencing from 1st June 2021

Program: Computer Engineering

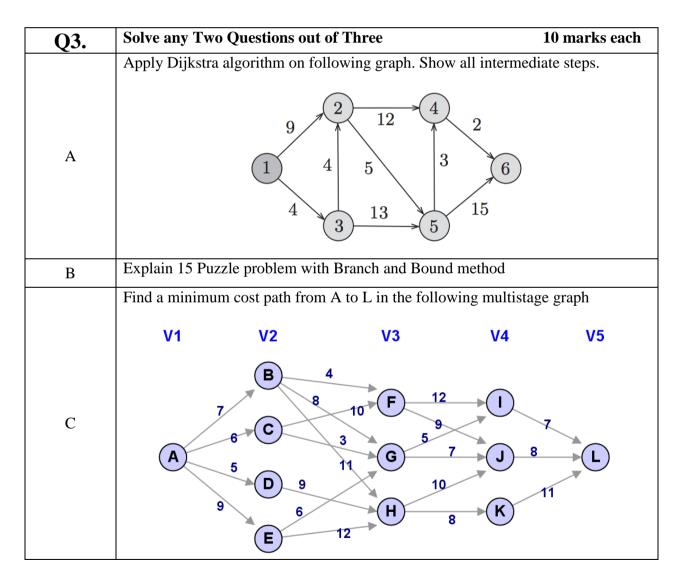
Curriculum Scheme: Rev2019

Examination: SE Semester IV

Course Code: CSC402 and Course Name: Analysis of Algorithm

Time: 2 hour

Max. Marks: 80


1. V	compulsory and carry equal marks
1. V	2
	Which of the following is not $O(n^2)$?
-	$(5^{10}) * n + 990$
	N ^{1.45}
Option C: n	$n^3/(\sqrt{n})$
Option D: ($(3^{50}) * n$
2. I	If A is asymptotically less efficient than B, it means?
Option A: E	B will be a better choice for all inputs
Option B: E	B will be a better choice for all inputs except possibly small inputs
Option C: E	B will be a better choice for all inputs except possibly large inputs
Option D: E	B will be a better choice for small inputs
3. I	In Quicksort algorithm, there is a procedure for finding a pivot element that splits
	the array into two sub-arrays, each of which contains at least Two-fifth of the
e	elements. Let T(n) be the number of comparisons required to sort n elements.
	Гћеп
	$\Gamma(n) \le 2T(n/5) + n$
Option B: 7	$T(n) \le T(2n/5) + T(3n/5) + n$
Option C: 7	$\Gamma(n) \le 2T(4n/5) + n$
Option D: 7	$\Gamma(n) \le 2T(n/2) + n$
	What is the result of following recurrences $T(n)=aT(n/b)+n^{c}$?
	$\Gamma(\mathbf{n}) = O(\mathbf{n}^{\log a})$
Option B: 7	$\Gamma(n) = O(n^c \log n)$
	$\Gamma(n) = O(f(n))$
Option D: 7	$\Gamma(n) = O(n^2)$
	The class of decision problems that can be solved by non-deterministic
p	polynomial algorithms are called as.
Option A: N	NP
1	Р
	Hard
Option D: C	Complete
	If you are sorting in ascending order with insertion sort, average case running
	time it will take is?
Option A: C	O(N)

Option B:	O(N log N)
Option C:	O(log N)
Option D:	$O(N^2)$
Option D.	
7.	Worst case time complexity of merge sort is
Option A:	O(n log n)
Option B:	$O(n^2)$
Option C:	$O(n^2 \log n)$
Option D:	$O(n \log n^2)$
opuon 21	
8.	Apply Quick sort on a given sequence 6 10 13 5 8 3 2 11. What is the sequence after first phase, pivot is first element?
Option A:	5 3 2 6 10 8 13 11
Option B:	5 2 3 6 8 13 10 11
Option C:	65131083211
Option D:	65328131011
9.	Consider the graph M with 3 vertices. Its adjacency matrix is shown below. Which of the following is true? 0 2 2 2 0 2 2 2 0
Option A:	Graph M has no minimum spanning tree
Option B:	Graph M has a unique minimum spanning trees of cost 4
Option C:	Graph M has 3 distinct minimum spanning trees, each of cost 4
Option D:	Graph M has 3 spanning trees of different costs
10.	Given items as {value, weight} pairs {{60,10}, {20,10}, {40,5}}. The capacity of knapsack=20. Find the maximum value output assuming items to be divisible.
Option A:	110
Option B:	80
Option C:	100
Option D:	40
11.	A graph with negative weight cycle is havingno. of shortest paths
Option A:	One
Option B:	Тwo
Option C:	Zero
Option D:	Infinite
12.	Floyd Warshall Algorithm falls into
Option A:	Greedy technique
Option B:	Dynamic Programming
Option C:	Linear Programming
Option D:	Backtracking
13.	In assembly line scheduling problem, lookup tables are required.
Option A:	0
Option B:	1
Option C:	2
Option D:	3

14.	A travelling salesman problem with 55 cities hasno. of feasible
	tours.
Option A:	37 arcs
Option B:	54 arcs
Option C:	55 arcs
option c.	
Option D:	990 arcs
1.7	
15.	is not a branch and bound strategy to generate branches
Option A:	LIFO branch and bound
Option B: Option C:	FIFO branch and bound Lowest cost branch and bound
Option D:	Highest cost branch and bound
16.	Of the following given options, which one of the following is a correct option that
	provides an optimal solution for 4-queens problem?
Option A:	(3,1,4,2)
Option B:	(2,3,1,4)
Option C:	(4,3,2,1)
Option D:	(4,2,3,1)
17.	Chromatic number of a graph isno of colors required to color the vertices
Ontion A.	in graph. Maximum
Option A: Option B:	Same
Option D:	Minimum
Option D:	More than Number of vertices
18.	In Rabin and Karp Algorithm, preprocessing can be done in
Option A:	$\theta(m^2)$
Option B:	θ (mlogn)
Option C:	θ (m)
Option D:	O(n)
10	
19.	What happens when the modulo value(q) is taken large?
Option A: Option B:	Complexity increases
Option B: Option C:	Spurious hits occur frequently Cost of extra checking is low
Option D:	Matching time increases
20.	Given a pattern of length- 5 window, find the spurious hit in the given text string.
	Pattern: 7 3 9 9 2
	Modulus: 13
	Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
	Text: 23590231415 2 6 7 3 9 9 2 1 3 9
L	

Option A:	6-10
Option B:	12-16
Option C:	3-7
Option D:	13-17

Q2	Solve any Four out of Six	5 marks each
А	Explain Master theorem with example	
В	Define P, NP, NP-Hard and NP-Complete Complexity Classes.	
С	Discuss Complexity of Quicksort Algorithm in all cases.	
D	Rewrite Binary Search Algorithm and Explain its complexity	
E	Find LCS for strings X= "ABSDG" and Y= "GBSTR"	
F	Write short note on Rabin Karp Algorithm	

