University of Mumbai

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1 June 2021

Program: **BE Civil Engineering**Curriculum Scheme: Rev 2016
Examination: TE Semester VI

Course Code: CEC601 and Course Name: Geotechnical Engineering-II

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks			
1.	Choose the most appropriate statement. During a consolidation test, at 50 average degree of consolidation, the effective stress is			
Option A:	zero			
Option B:	equal to total stress			
Option C:	less than total stress			
Option D:	equal to excess pore water pressure			
2.	Choose the wrong statement.			
Option A:	Consolidation test on a soil is a stress controlled test.			
Option B:	Consolidation occurs due to dissipation of excess pore water pressure.			
Option C:	During consolidation, void ratio of the soil decreases.			
Option D:	During consolidation, degree of saturation decreases.			
3.	A clay layer 4 m thick is sandwiched between two sand layers and subjected to some vertical pressure from the superstructure built over it. Co-efficient of consolidation was found to be 0.025 cm ² /min. Calculate the time required for 50% consolidation.			
Option A:	around 10 months			
Option B:	around 12 months			
Option C:	around 7 months			
Option D:	around 5 months			
4.	In a UU triaxial test on pure clay sample, confining pressure was 50 kN/m ² , deviator stress at failure was 110 kN/m ² and pore water pressure measured at failure was 30 kN/m ² . Calculate the effective major principal stress at failure.			
Option A:	60 kN/m^2			
Option B:	130 kN/m^2			
Option C:	100 kN/m^2			
Option D:	80 kN/m^2			
5.	The concept of shear strength is not required directly to analyse the problems related to which one of the following?			
Option A:	flow through the soil mass			
Option B:	bearing capacity of foundations			
Option C:	stability of earth slopes			
Option D:	lateral earth pressure from soils on retaining structures			

6.	A saturated clay sample was subjected to CD triaxial test. Cell pressure = 50 kN/m^2 . Major principal stress at failure = 150 kN/m^2 . At failure, estimate the			
	normal stress on an inclined plane making an angle of 30 degree with the major			
	principal plane inside the soil sample.			
Option A:	55 kN/m ²			
Option B:	110 kN/m ²			
Option C:	75 kN/m^2			
Option D:	125 kN/m^2			
opuon 2 :				
7.	The backfill behind a retaining wall consists of cohesionless soil having $\phi = 30^{\circ}$			
	and unit weight of 19 kN/m ³ . The backfill surface is horizontal. If the wall is			
	pushed towards the backfill, calculate applying Rankine's concept the inclination			
	of possible failure plane with horizontal is?			
Option A:	30°			
Option B:	60°			
Option C:	45°			
Option D:	15°			
Spring.				
8.	A vertical smooth retaining wall is supporting 8 m height backfill of cohesionless			
0.	sand with an angle of internal friction of 30° and dry unit weight of 18 kN/m ³ .			
	The water table rises to the backfill surface. Saturated unit weight of the backfill			
	is 22 kN/m ³ . Estimate the total active earth pressure force (rounded to the nearest			
	integer) acting on the wall.			
Option A:	444 kN/m			
Option B:	524 kN/m			
Option C:	555 kN/m			
Option D:	424 kN/m			
Spiron 2.				
9.	From Culmann's graphical method, the active earth pressure force is determine			
	by measuring from the tangent point on Culmann's line			
Option A:	the normal distance to φ-line			
Option B:	the distance to ϕ -line parallel to ψ -line			
Option C:	the normal distance to ψ-line			
Option D:	the distance to ψ -line parallel to φ-line			
option 2.	the distance to \$\psi\$ mic parametes \$\psi\$ mic			
10.	A square footing 2.5 m by 2.5 m is built in a homogeneous bed of sand of unit			
	weight 20 kN/m ³ and having an angle of shearing resistance of 36°. The depth of			
	the base of footing is 1.5 m below the ground surface. $Nc = 65.4$, $Nq = 49.4$, $N\gamma = 1.5$			
	54.0. Calculate the safe load that can be carried by a footing with a factor of			
	safety of 3 considering general shear failure. Use Terzaghi's analysis.			
Option A:	5462.5 kN			
Option B:	5800.5 kN			
Option C:	6250 kN			
Option D:	5200 kN			
•				
11.	When the water table rises to the ground surface, the ultimate bearing capacity of			
	a shallow foundation on sand is reduced about			
O :: 4				
Option A:	50%			
Option B: Option C:	75%			
I Intion ('	25%			

Option D:	0%			
12.	The normissible settlement is the maximum in the case of			
Option A:	The permissible settlement is the maximum in the case of			
Option B:	Isolated footing on clay			
Option C:	Raft on clay Isolated footing on sand			
Option C:	Isolated footing on sand Raft on sand			
Орион D.	Kait on Sand			
13.	The equation given by Skempton for compression index for a remoulded sample is			
Option A:	$C_c=0.009(W_L-10\%)$			
Option B:	$C_c = 0.007(W_L - 10\%)$			
Option C:	$C_c = 0.007(W_L - 20\%)$			
Option D:	$C_c=0.007(W_L-30\%)$			
1				
14.	A long natural slope of cohesionless soil is inclined at 12° to the horizontal. What will be the factor of safety of the slope if $\varphi = 30^{\circ}$?			
Option A:	0.13			
Option B:	0.4			
Option C:	2.72			
Option D:	0.4			
1				
15.	Failure of the stability of slopes, generally occurs along			
Option A:	Slip plane			
Option B:	A curved surface			
Option C:	A horizontal surface			
Option D:	All the surfaces			
16.	If the failure occurs along a surface of sliding that intersect the slope at its toe, the slide is known as			
Option A:	Base failure			
Option B:	Face failure			
Option C:	Slope failure			
Option D:	Combined failure			
17.	If a hammer is raised by steam and allowed to fall by gravity on top of the pile, it is called as			
Option A:	Single acting hammer			
Option B:	Vibratory hammer			
Option C:	Diesel hammer			
Option D:	Drop hammer			
18.	The piles that are used for protecting atmestures from shine and fleeting chiest is			
	The piles that are used for protecting structures from ships and floating object is Anchor piles			
Option A:	1			
Option B:	Compaction piles			
Option C:	Fender piles			
Option D:	Batter piles			
19.	The piles that are used for protecting structures from ships and floating object is			
Option A:	Compaction piles			
opuon 11.	Companion price			

Option B:	Anchor piles
Option C:	Fender piles
Option D:	Batter piles
20.	If the angle of internal friction decreases, then K _a
Option A:	decreases
Option B:	increases
Option C:	equal to zero
Option D:	does not change

Q2 (20 Marks)				
A	Solve an	·		5 marks each
i.	Explain s	spring analogy theory	y for primary consolida	ation.
ii.	Classify shear tests depending upon drainage condition and how these are simulated to field conditions.			
iii.	What are different types of slope failures? Explain briefly finite and infinite slopes.			
В	Solve any One 10 marks each			
i.	A saturated soil stratum 6m thick lies above an impervious stratum and below a previous stratum. It has a compression index 0.28 and a coefficient of permeability of 3.5 x 10 ⁻⁴ cm/sec. Its void ratio at a stress of 150kPa is 1.95. Determine (i) the change in void ratio due to an increase in stress to 210kPa; (ii) settlement of the soil stratum due to the above increase in stress; and (iii) time required for 50% consolidation. Assume, time factor (T) for 50% consolidation as 0.20.			
ii.	The following data relate to a triaxial compression test performed on a soil sample. i) determine the total and effective stress parameter of the soil. ii) draw failure envelope from Mohr circles. Test Cell Pressure Max. Deviator Pore Pressure at No (kPa) Stress (kPa) Max. Deviator Stress (kPa) 1 80 175 45			
	2	150	240	50
	3	210	300	60

Q3	
(20 Marks)	
A	Solve any Two 5 marks each
i.	Compare Rankine's theory of lateral earth pressure to coulomb's theory of
	lateral earth pressure.
ii.	Mention different types of shallow foundation and briefly explain with neat
	sketch.
iii.	Classify and briefly explain different types of pile foundation based on load

	transfer, function and method of construction.	
В	Solve any One	10 marks each
i.	A smooth rigid retaining wall of 6m high carries a u	niform surcharge load of
	12kPa. The backfill is clayey sand possessing t	he following properties:
	Y=16kN/m ³ , ϕ =25°, and c = 6.5kPa. Determine the p	passive earth pressure and
	draw the pressure diagram.	
ii.	A footing 2m square is laid at a depth of 1.3m be	elow the ground surface.
	Determine the net ultimate bearing capacity of sand	using I.S. code method.
	Take Y= 20 kN/m ³ and ϕ = 30 °. With continuation of ab	ove parameters determine
	the net ultimate bearing capacity of the footing if: (i) t	the water table rises to the
	level of the base, and (ii) the water table is 1m below the	ne base.