University of Mumbai Examination 2021 under cluster 9 (FAMT)

Examinations Commencing from 1st June 2021

Program: **BE(MECHANICAL**)
Curriculum Scheme: Rev2019 'C' Scheme

Examination: SE Semester IV

Course Code: MEC401 and Course Name: Engineering Mathematics-4

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	
1.	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal
Option A:	a=2
Option B:	a = -2
Option C:	a = -4
Option D:	a = 4
2.	Vector field is Irrotational if
Option A:	
Option B:	$\nabla \times \vec{f} = 0$ $\nabla \cdot \vec{f} = 0$
Option C:	$\begin{bmatrix} \mathbf{v} \cdot \mathbf{j} &= 0 \\ \mathbf{r} & \mathbf{r} \end{bmatrix}$
	$\nabla \times \vec{f} \neq 0$
Option D:	$\nabla \cdot \vec{f} = 1$
	1
3.	The residue at the pole z =-1 of $f(z) = \frac{1}{(z+1)(z-2)^2}$ is
Option A:	1/3
Option B:	-1/3
Option C:	1/9
Option D:	-1/9
4.	The poles of $f(z) = \frac{3z-1}{(z+1)(z-2)}$ are
Option A:	1,-2
Option B:	-1,-2
Option C:	-1,2
Option D:	1,2
5.	Value of $\int_{c} \frac{\sin 2z dz}{(z + \pi/3)^4} dz$ is where C: $ z = 2$
Option A:	$4\pi i/3$
Option B:	$\pi i/3$
Option C:	$2\pi i/3$
Option D:	$4\pi i$
6.	The value of $\int_0^{1+i} \bar{z} dz$ along straight line y=x is
Option A:	0
Option B:	2

Option C:	3					
Option D:	1					
- r · · ·						
7.	If the two regression coefficient are -8/15 and -5/6 then the correlation coefficient					
	is					
Option A:	0.667					
Option B:	-0.507					
Option C:	-0.667					
Option D:	0.607					
- F · · ·						
8.	Line of regression y on x is $8x-10y+66=0$. Line of regression x on y is $40x-18y$					
	-214 =0. The value of variance of y is 16. The standard deviation of x is					
Option A:	3					
Option B:	2					
Option C:	6					
Option D:	7					
9.	$\sum xy = 2638, \bar{x} = 14, \bar{y} = 17, \text{ n} = 10 \text{ then cov } (x,y) \text{ is}$					
Option A:	24.2					
Option B:	25.8					
Option C:	23.9					
Option D:	20.5					
1						
10.	Least square fit for the straight line $y=ax + b$ to the data					
	x 1 2 3					
	v 5 7 9					
Option A:	y = 2x + 4					
Option B:	y = 2x - 3					
Option C:	y = 2x + 3 $y = 2x + 3$					
Option D:	y = 2x + 3 $y = 3x - 4$					
Option D.	y = 3x =					
11.	A random variable X has the following probability distribution. The value of K is					
11.	$\begin{bmatrix} x & 2 & 3 & 4 & 5 \end{bmatrix}$					
	P(x) 5/K 7/K 9/K 11/K					
Option A:	16					
Option B:	8					
Option C:	48					
Option D:	32					
Spring.						
12.						
	In Poisson distribution if $n = 100$, $p = 0.01$, then the value of $P(r = 0)$					
Option A:	1/e					
Option B:	2/e					
Option C:	3/e					
Option D:	1/4e					
F						
13.	A continuous random variable X has pdf					
	$f(x) = kx; 0 \le x \le 1$ and $k; 1 \le x \le 2$.then the value of k					
Option A:	2					
Option B:	2/3					
- r · · ·						

_	
Option C:	3/2
Option D:	3
14.	If random variable X takes the values of $x=1,2,3$ with corresponding Probabilities $1/6$, $2/3$ $1/6$ then $E(x)$ is
Option A:	1
Option B:	3
Option C:	4
Option D:	2
option B.	
15.	Number of road accident on a highway during a month follows a Poisson distribution with mean 2. Probability that in certain month number of accidents in the highway will be equal to 2 is
Option A:	0.354
Option B:	0.2707
Option C:	0.435
Option D:	0.521
_	
16.	In a normal distribution when mean is 1 and S.D =3 then for the intervals $-1.43 \le x \le 6.19$ (for z = -0.81, A= 0.2910, for z = 1.73, A = 0.4582)
Option A:	0.7492
Option B:	0.4582
Option C:	0.2910
Option D:	0.1672
P	
17.	X is normally distributed $\mu = 15$, $\sigma^2 = 9$. Given that for z=1, A=0.3413 $P(X \ge 18)$ is given by
Option A:	0.1587
Option B:	0.4231
Option C:	0.2231
Option D:	0.3413
Орион В.	0.5415
18.	In normal distribution. The area under standard normal curve to the right of y axis is
Option A:	1
Option B:	0
Option C:	0.5
Option D:	0.6
-	
19.	If observed frequencies are 5,10,15 and expected frequencies are each equal to 10 then chi square value is
Option A:	20
Option B:	10
Option C:	15
Option D:	5
1	
20.	Among 64 offspring of a certain cross between guinea pig 34 were red,10 were
	black and 20 were white, According to genetic model these number should in the
	ratio 9:3:4. Expected frequencies in the order
Option A:	36,12,16
Option B:	12,36,16
Option C:	20,12,16

Q2	Solve any Four out of Six 5 marks each									
A	Evaluate by Green's theorem for the field $\vec{F} = x^2 \hat{i} + xy \hat{j} \text{ over the region } R \text{ enclosed by } y=x^2 \text{ and line } y=x$									
В	$\vec{F} = x^2 \hat{i} + xy \hat{j} \text{ over the region R enclosed by } y=x^2 \text{ and line } y=x$ Evaluate $\int_c \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz ; c \text{ is } z = 3$									
С	Determine the coefficient of correlation between X & Y from the following data									
		51 5	54	56	59	65	60	7	70	
	Y 3	38 4	14	33	36	33	23	1	13	
D E	There is working women's hostel in a town where 75 % are from neighboring town, the rest all are from same town. 48% of women who hail from same town are graduates and 83 % of the women who have come from neighboring town are also graduates. Find the probability that a woman selected at a random is graduates from the same town. In a certain examination test 2000 students appeared in a subject of statistics. Average marks obtained were 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks,									
F	supposing that marks are distributed normally? (For z = 2, A = 0.4772) The following table gives the number of accidents in a district during a week. Apply chi-square test to find whether the accidents are uniformly distributed over the week. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Q3	Solve any Four out of Six	5 marks each									
A	Evaluate using Stokes theorem $\iint_s (\nabla \times \overline{f}) \cdot \widehat{n} ds$ where s is curve surface of the paraboloid $x^2 + y^2 = 2z$ bounded by the plane $z = 2$ where $\overrightarrow{f} = 3(x - y)\overrightarrow{i} + 2xz\overrightarrow{j} + xy\overrightarrow{k}$										
В	Obtain Laurent's series expansions of $f(x) = \frac{z-1}{z^2-2z-3}$; $ z > 3$										
С	Calculate the Spearman's rank correlation coefficient for the following data. x 32 55 49 60 43 37 43 49 10 20										
	x 32 55 49 60 43 37 43 y 40 30 70 20 30 50 72	49 10 20 60 45 25									
D	A C.R.V X has the following pdf. $f(x) = k(x - x^2)$; $0 \le x \le 1$ Find K and mean										
Е	Ten individuals are chosen at random from a population & their height are found to be (inches): $63,63,64,65,66,69,69,70,70$ &71. In the light of the data, discuss the suggestion that the mean height in the population is 66 inches. (Table value of t_{α} =2.6, d.f =9, level of significance = 5%))										
F	Standard deviation of two samples of size 9 & 13 were found to be 12.15 & 11.85. Can it be concluded that the samples were drawn from the normal population with the same standard deviation? (Given $F_{0.025} = 3.51$ for $d.o.f.8$ 12 & $F_{0.025} = 4.20$ for $d.o.f.12$ 8)										