University of Mumbai

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Program: B.E.(Information Technology)

Curriculum Scheme: Rev-2019 'C' Scheme

Examination: S.E. Semester IV

Course Name: Engineering Mathematics IV Course Code: ITC 401

Time: 2 hour _____

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks						
1.	The region of rejection	ion of the null hypoth	nesis H ₀ is known as				
Option A:	Critical region						
Option B:	Favourable region						
Option C:	Domain						
Option D:	Confidence region						
2.	Sample of two typ following data were	es of electric bulbs obtained	were tested for lea	ngth of life and the			
		Size	Mean	SD			
	Sample 1	8	1234 h	36 h			
	Sample 2	7	1036 h	40 h			
	The absolute value of test statistic in testing the significance of difference between means is						
Option A:	t=10.77						
Option B:	t=9.39						
Option C:	t=8.5						
Option D:	t=6.95						
3.	If X is a poisson var	iate such that $P(X =$	1) = $P(X = 2)$, the	P(X = 3) is			
Option A:	$\frac{4e^2}{3}$						
Option B:	$4e^2$						
Option C:	$\frac{4}{3e^2}$						
Option D:	$\frac{4}{e^2}$						

4.	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$
	If $A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, Then following is not the eigenvalue of adj A.
Option A:	6
Option B:	2
Option C:	4
Option D:	3
-	
5.	[2 -1 1]
	For the matrix $\begin{bmatrix} 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ the eigenvector corresponding to the distinct eigenvalue $\lambda = 2$ is
Option A:	[1]
option 74.	
Option B:	$\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$
Option C:	
Option D:	$\begin{bmatrix} 1\\2\\1 \end{bmatrix}$
6.	The necessary and sufficient condition for a square matrix to be diagonalizable is that for each of it's eigenvalue
Option A:	algebraic multiplicity > geometric multiplicity
Option B:	algebraic multiplicity = geometric multiplicity
Option C:	algebraic multiplicity < geometric multiplicity
Option D:	algebraic multiplicity \neq geometric multiplicity
7.	If the characteristic equation of a matrix A of order 3×3 is $\lambda^3 - 7\lambda^2 + 11\lambda - 5 = 0$, then by the Cayley-Hamilton theorem A^{-1} is equal to
Option A:	$\frac{1}{5}(A^3 - 7A^2 + 11A)$
Option B:	$\frac{1}{5}(A^2 + 7A + 11I)$
Option C:	$\left \frac{1}{5}(A^3 + 7A^2 + 11A)\right $
Option D:	$\frac{1}{5}(A^2 - 7A + 11I)$
0	
ð.	Value of an integral $\int_0^{\infty} (x^2 - iy) dz$ along the path $y = x^2$ is
Option A:	$\frac{5}{6} - \frac{i}{6}$
Option B:	$-\frac{5}{6}-\frac{i}{6}$
Option C:	$\frac{5}{6} + \frac{i}{6}$
Option D:	$\frac{-5}{6} + \frac{i}{6}$

Option A:1Option A:1Option C:3/2Option D:010.Analytic function gets expanded as a Laurent series if the region of convergence is11.RectangularOption A:RectangularOption D:AnnularOption D:Annular11.Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ isOption B:2/9Option B:2/9Option D:012.z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ 0 , otherwise12.z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ 0 , otherwise13. $z\{\sin(3k+5)\}, k \ge 0$ isOption D:K13. $z\{\sin(3k+5)\}, k \ge 0$ isOption A: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 3$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 1$ 14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ isOption A: $2^k - 2$ Option A:Option A: $2^k - 1$
Option A: 1 Option B: -1 Option D: 0 10. Analytic function gets expanded as a Laurent series if the region of convergence is Option A: Rectangular Option B: Triangular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option B: 2/9 Option B: 2/9 Option B: 2/9 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ Option B: 0 Option C: -1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 - 2z\cos 3 + 1$ O
Option B: -1 Option C: $3/2$ Option D: 0 10. Analytic function gets expanded as a Laurent series if the region of convergence is Option A: Rectangular Option B: Triangular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: $4/9$ Option B: $2/9$ Option B: $2/9$ Option B: $2/9$ Option D: $1/2$ Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ is Option A: 1 Option B: 0 Option B: 0 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option A: $2^k - 2$ Option A: $2^k - 2$ Option A: $2^k - 2$ Option A: $2^k - 1$
Option C: $3/2$ Option D:010.Analytic function gets expanded as a Laurent series if the region of convergence is0ption A:RectangularOption B:TriangularOption D:Annular11.Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ isOption B:2/9Option B:2/9Option D:00ption B:2/9Option D:012.z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ is 0, otherwiseOption A:1Option B:00ption B:00ption B:012.z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ is 0, otherwiseOption B:00ption B:00ption B:1Option B:213. $z\{\sin(3k + 5)\}, k \ge 0$ isOption A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2$ 14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$ 14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$ 15. $z^k - 2$ Option A:16. $z^k - 1$
Option D:010.Analytic function gets expanded as a Laurent series if the region of convergence is0ption A:RectangularOption B:TriangularOption C:CircularOption D:Annular11.Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ isOption A:4/9Option B:2/9Option C:1/2Option D:012.z-transform of an unit impulse function $\delta(k) = 1$, at $k = 0$ 0, otherwise12.z-transform of an unit impulse function $\delta(k) = 1$, at $k = 0$ 0, otherwise13. $z\{\sin(3k+5)\}, k \ge 0$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 - 2zcos 3 + 1$ Option D: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 1$
10.Analytic function gets expanded as a Laurent series if the region of convergence is0isOption A:RectangularOption B:TriangularOption D:Annular11.Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ isOption A: $4/9$ Option B: $2/9$ Option D: $1/2$ Option D: $1/2$ Option D: 0 12. z -transform of an unit impulse function $\delta(k) = 1$, at $k = 0$ o, otherwise13. $z[\sin(3k+5)], k \ge 0$ $z^2 \sin 5 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \cos 3 + 1$ Option B: $z^2 - 1$
10. Analytic function gets expanded as a Laurent series if the region of convergence is Option A: Rectangular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: $4/9$ Option B: $2/9$ Option C: $1/2$ Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ 0, $otherwise$ is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, \ k \ge 0$ is Option A: $z^2 \sin 5 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2zcos 3 + 1$ Option A: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2zcos 3 + 1$ Option A: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2zcos 3 + 1$
is Option A: Rectangular Option B: Triangular Option C: Circular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option A: 4/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ option A: 1 Option B: 0 Option C: -1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 5 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option A: $2^k - 2$ Option A: $2^k - 2$ Option B: $2^k - 1$
Option A: Rectangular Option B: Triangular Option C: Circular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option B: 2/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ Option A: 1 Option A: 1 Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, \ k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 7 - z \sin 7$ $z^2 - 2z \cos 7 - z \sin 7$ $z^2 - z \cos 7 - z \sin 7$ $z^2 - z \cos 7 - z \sin 7$ z
Option B: Triangular Option C: Circular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: $4/9$ Option B: $2/9$ Option C: $1/2$ Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ Option A: 1 Option B: 0 Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, \ k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option A: $2^k - 2$ Option A: $2^k - 2$ Option B: $2^k - 1$
Option C: Circular Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option B: 2/9 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ Option A: 1 Option B: 0 Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$
Option D: Annular 11. Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option B: 2/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z\cos 5$ $z^$
11.Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z = 2$ isOption A:4/9Option B:2/9Option C:1/2Option D:012.z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ isOption A:1Option B:00013. $z\{\sin(3k+5)\}, k \ge 0$ isOption A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 2zcos 3 + 1$ Option B: $z^2 - 1$
Residue of $f(z) = \frac{1}{(z+1)^2(z-2)}$ at a pole $z = 2$ is Option A: 4/9 Option B: 2/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ $\frac{1}{0}$, otherwise Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option A: $z^k - 2$ Option A: $2^k - 2$
Option A: 4/9 Option B: 2/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$
Option B: 2/9 Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ 0, otherwise is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$
Option C: 1/2 Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ 0, otherwise is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$
Option D: 0 12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ 0, otherwise is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $\frac{z^2 \sin 2 - z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option B: $\frac{z^2 \sin 5 + z \sin 2}{z^2 - 2z \cos 3 + 1}$ Option C: $\frac{z^2 \sin 5 - z \sin 2}{z^2 - 2z \cos 3 + 1}$ Option C: $\frac{z^2 \sin 2 - z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 - z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 - z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 + z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 + z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 + z \sin 5}{z^2 - 2z \cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 + z \sin 5}{z^2 - 2z \cos 3 + 1}$
12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, \ k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$
12. z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, $at \ k = 0$ is Option A: 1 Option B: 0 Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, \ k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ I4. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $2^k - 2$ Option B: $2^k - 1$
Option A:1Option B:0Option C:-1Option D:K13. $z\{\sin(3k+5)\}, k \ge 0$ isOption A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^k - 2$ Option A: $2^k - 2$ Option B: $2^k - 1$
Option B: 0 Option C: -1 Option D: K 13. $z{\sin(3k+5)}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option A: $z^k - 2$ Option B: $2^k - 2$
Option C: -1 Option D: K 13. $z\{\sin(3k+5)\}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^k - 2$ Option B: $z^k - 1$
Option D:K13. $z\{\sin(3k+5)\}, k \ge 0$ isOption A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2zcos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2zcos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2zcos 3 + 1$ 14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ isOption A: $2^k - 2$ Option B: $2^k - 1$
13. $z{\sin(3k+5)}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z\cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z\cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z\cos 3 + 1$ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $2^k - 2$ Option B: $2^k - 1$
13. $z{\sin(3k+5)}, k \ge 0$ is Option A: $z^2 \sin 2 - z \sin 5$ $z^2 - 2z \cos 3 + 1$ Option B: $z^2 \sin 5 + z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option C: $z^2 \sin 5 - z \sin 2$ $z^2 - 2z \cos 3 + 1$ Option D: $z^2 \sin 2 + z \sin 5$ $z^2 - 2z \cos 3 + 1$ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $2^k - 2$ Option B: $2^k - 1$
Option A: $ \begin{array}{rcl} z^{2} \sin 2 - z \sin 5 \\ z^{2} - 2z \cos 3 + 1 \\ \end{array} $ Option B: $ \begin{array}{rcl} z^{2} \sin 5 + z \sin 2 \\ z^{2} - 2z \cos 3 + 1 \\ \end{array} $ Option C: $ \begin{array}{rcl} z^{2} \sin 5 - z \sin 2 \\ z^{2} - 2z \cos 3 + 1 \\ \end{array} $ Option D: $ \begin{array}{rcl} z^{2} \sin 2 + z \sin 5 \\ z^{2} - 2z \cos 3 + 1 \\ \end{array} $ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $ \begin{array}{rcl} z^{k} - 2 \\ \end{array} $ Option B: $ \begin{array}{rcl} z^{k} - 1 \\ \end{array} $
$\frac{z^2 - 2z\cos 3 + 1}{2z\sin 5 + z\sin 2}$ Option B: $\frac{z^2 \sin 5 + z\sin 2}{z^2 - 2z\cos 3 + 1}$ Option C: $\frac{z^2 \sin 5 - z\sin 2}{z^2 - 2z\cos 3 + 1}$ Option D: $\frac{z^2 \sin 2 + z\sin 5}{z^2 - 2z\cos 3 + 1}$ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $\frac{2^k - 2}{2^k - 1}$
Option B: $z^{2} \sin 5 + z \sin 2$ $z^{2} - 2z \cos 3 + 1$ Option C: $z^{2} \sin 5 - z \sin 2$ $z^{2} - 2z \cos 3 + 1$ Option D: $z^{2} \sin 2 + z \sin 5$ $z^{2} - 2z \cos 3 + 1$ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $2^{k} - 2$ Option B: $2^{k} - 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Option C: $ \frac{z^{2} \sin 5 - z \sin 2}{z^{2} - 2z \cos 3 + 1} $ Option D: $ \frac{z^{2} \sin 2 + z \sin 5}{z^{2} - 2z \cos 3 + 1} $ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $ \frac{2^{k} - 2}{2^{k} - 1} $
Option D: $ \frac{z^2 - 2z\cos 3 + 1}{z^2 \sin 2 + z \sin 5} $ $ \frac{z^2 - 2z\cos 3 + 1}{z^2 - 2z\cos 3 + 1} $ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $ \frac{2^k - 2}{2^k - 1} $
Option D: $ \frac{z^{2} \sin 2 + z \sin 5}{z^{2} - 2z \cos 3 + 1} $ 14. The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is Option A: $2^{k} - 2$ Option B: $2^{k} - 1$
$z^2 - 2zcos 3 + 1$ 14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ isOption A: $2^k - 2$ Option B: $2^k - 1$
14.The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ isOption A: $2^k - 2$ Option B: $2^k - 1$
Option A: $2^k - 2$ Option B: $2^k - 1$
Option B: $2^k - 1$
- Option D, 2 - 1
Ontion C: $2^{k} \perp 1$
$\begin{array}{c c} \hline \text{Option } \bigcirc & 2^k + 2 \end{array}$
15. If the basic solution of LPP is $x = 1$, $v = 0$ then the solution is
Option A: Feasible and non-Degenerate
Option B: Non-Feasible and Degenerate
Option C: Feasible and Degenerate
Option D: Non-Feasible and non-Degenerate

16.	If the primal LPP has an unbounded solution then the dual has							
Option A:	Unbounded solution							
Option B:	Bounded solution							
Option C:	Feasible solution							
Option D:	Infeasible solution							
17.	Dual of the following LPP is							
	Maximize $z = 2x_1 + 9x_2 + 11x_3$							
	$x_1 - x_2 + x_3 \ge 3$							
	Subject to $-3x_1 + 2x_3 \le 1$							
	$2x_1 + x_2 - 5x_3 = 1$							
	$x_1, x_2, x_3 \ge 0$							
Option A:	$Minimize w = -3v_1 + v_2 + v'$							
1	$-y_1 - 3y_2 + 2y' \ge 2$							
	Subject to $v_1 + v' > 9$							
	$-v_1 + 2v_2 - 5v' > 11$							
	$v_1, v_2 > 0$, y' unrestricted							
Option B:	Minimize $w = -3v_1 + v_2 + v_3$							
1	$-y_1 - 3y_2 + 2y_3 \ge 2$							
	Subject to $y_1 + y_3 \ge 9$							
	$-y_1 + 2y_2 - 5y_3 \ge 11$							
	$y_1, y_2, y_3 \ge 0$							
Option C:	Minimize $w = 2y_1 + 9y_2 + 11y'$							
	$-y_1 - \bar{3}y_2 + \bar{2}y' \ge \bar{3}$							
	Subject to $y_1 + y' \ge 1$							
	$-y_1 + 2y_2 - 5y' \ge 1$							
	$y_1, y_2 \ge 0, y'$ unrestricted							
Option D:	Minimize $w = 2y_1 + 9y_2 + 11y_3$							
	$-y_1 - 3y_2 + 2y_3 \ge 3$							
	Subject to $y_1 + y_3 \ge 1$							
	$-y_1 + 2y_2 - 5y_3 \ge 1$							
	$y_1, y_2 \ge 0$, y' unrestricted							
18.	Consider the NLPP:							
	Maximize $z = f(x_1, x_2)$, subject to the constraint $h = g(x_1, x_2) - b \le 0$.							
	Let $L = f - \lambda g$, then the Kuhn-Tucker conditions are							
Option A:	$\frac{\partial L}{\partial L} > 0, \frac{\partial L}{\partial L} > 0, \lambda h > 0, h > 0, \lambda > 0$							
	$\frac{\partial x_1}{\partial x_2}$							
Option B:	$\frac{\partial L}{\partial t} = 0, \qquad \frac{\partial L}{\partial t} = 0, \qquad \lambda h = 0, \qquad h < 0, \qquad \lambda > 0$							
	$\frac{\partial x_1}{\partial x_2}$ of $\frac{\partial x_2}{\partial x_2}$							
Option C:	$\frac{\partial L}{\partial h} = 0$ $\frac{\partial L}{\partial h} = 0$ $\lambda h > 0$ $h < 0$ $\lambda < 0$							
	$\partial x_1 = 0, \partial x_2 = 0, \lambda n \ge 0, n \ge 0, n \ge 0$							
Option D:	$\frac{\partial L}{\partial L} > 0$ $\frac{\partial L}{\partial L} > 0$ $\lambda h > 0$ $h > 0$ $\lambda = 0$							
	$\partial x_1 = 0, \partial x_2 = 0, \lambda n \ge 0, n \ge 0, \lambda = 0$							
19.	In a non-linear programming problem,							
Option A:	All the constraints should be linear							
Option B:	All the constraints should be non-linear							

Option C:	Either the objective function or atleast one of the constraints should be non-linear
Option D:	The objective function and all constraints should be linear.
20.	Pick the non-linear constraint
Option A:	$xy + y \ge 7$
Option B:	$2x - y \leq 5$
Option C:	$x + y \le 6$
Option D:	x + 2y = 9

Subjective/descriptive questions

Q2	Solve any Four out of Six5 marks each
(20 Marks)	
А	In an exam taken by 800 candidates, the average and standard deviation of marks obtained (normally distributed) are 40% and 10% respectively. What should be the minimum score if 350 candidates are to be declared as passed
В	If A= $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, By using Cayley-Hamilton theorem find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 + 2A + I$
С	Evaluate the following integral using Cauchy-Residue theorem. $I = \int_C \frac{z^2 + 3z}{\left(z + \frac{1}{4}\right)^2 (z - 2)} dz \text{ where c is the circle } \left z - \frac{1}{2}\right = 1$
D	Obtain inverse z-transform $\frac{z+2}{z^2-2z-3}$, $1 < z < 3$
E	Solve by the Simplex method Maximize $z = 10x_1 + x_2 + x_3$ Subject to $\begin{array}{l} x_1 + x_2 - 3x_3 \leq 10 \\ 4x_1 + x_2 + x_3 \leq 20 \\ x_1, x_2, x_3 \geq 0 \end{array}$
F	Using Lagrange's multipliers solve the following NLPP Optimise $z = 4x_1 + 8x_2 - x_1^2 - x_2^2$ Subject to $x_1 + x_2 = 2$ $x_1, x_2 \ge 0$

Q3	Solve any Four out of Six5 marks each							
(20 Marks)								
	When the first pr distribution of pr	roof of 392 inting mista	pages of a akes were fo	book of 1 ound to be	200 pages v as follows.	vere read, the		
А	Noofmistakesinpage (X)	0	1	2	3	4		
	No. of pages (f)	275	72	30	7	5		
	Fit a poisson dist	ribution to	the above d	ata and test	the goodne	ess of fit.		

В	Show that the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$ is not diagonalizable.
С	If $f(z) = \frac{z-1}{(z-3)(z+1)}$ obtain Taylor's and Laurent's series expansions of $f(z)$ in the domain $ z < 1 \& 1 < z < 3$ respectively.
D	If $f(k) = \frac{1}{2^k} * \frac{1}{3^k}$ find $z\{f(k)\}, k \ge 0$
Е	Solve using dual simplex method Minimize $z = 2x_1 + 2x_2 + 4x_3$ $2x_1 + 3x_2 + 5x_3 \ge 2$ Subject to $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$ $x_1, x_2, x_3 \ge 0$
F	Solve following NLPP using Kuhn-Tucker method Maximize $z = 2x_1^2 - 7x_2^2 - 16x_1 + 2x_2 + 12x_1x_2 + 7$ Subject to $2x_1 + 5x_2 \le 105$ $x_1, x_2 \ge 0$

Standard Normal Distribution Table

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998

t-Distribution Table

The shaded area is equal to α for $t - t_{\alpha}$.

df	t.100	t.oso	t.000 t.025 t.010		t.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
00	1.282	1.645	1.960	2.326	2.576

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities

	Right-Tail Probability									
df	0.250	0.100	0.050	0.025	0.010	0.005	0.001			
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83			
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82			
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27			
4	5.39	7.78	9.49	11.14	13.28	14.86	18.47			
5	6.63	9.24	11.07	12.83	15.09	16.75	20.52			
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46			
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32			
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12			
9	11.39	14.68	16.92	19.02	21.67	23.59	27.88			
10	12.55	15.99	18.31	20.48	23.21	25.19	29.59			
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26			
12	14.85	18.55	21.03	23.34	26.22	28.30	32.91			
13	15.98	19.81	22.36	24.74	27.69	29.82	34.53			
14	17.12	21.06	23.68	26.12	29.14	31.32	36.12			
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70			
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25			
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79			
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31			
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82			
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32			
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62			
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70			
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40			
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66			
60 70	66.98 77.58	74.40	79.08	83.30	88.38	91.95	99.61			
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8			
100	109.1	118.5	124.3	129.6	135.8	140.2	137.2			