University of Mumbai

Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Program: S.E.(Computer Engineering)
Curriculum Scheme: Rev-2019 'C' Scheme
Examination: S.E. Semester IV

Course Code: CSC401 Course Name: Engineering Mathematics IV

Time: 2 hour Max. Marks: 80

Q1.	Choose the correct compulsory and ca		ving questions. All	the Questions are			
1	The main of minds	£ 41 11 1 41					
1.	· · · · · · · · · · · · · · · · · · ·	on of the null hypoth	iesis H ₀ is known as				
Option A:	Critical region						
Option B:	Favourable region	Favourable region					
Option C:	Domain						
Option D:	Confidence region						
2.	Sample of two typ following data were		were tested for les	ngth of life and the			
		Size	Mean	SD			
	Sample 1	8	1234 h	36 h			
	Sample 2	7	1036 h	40 h			
	The absolute value between means is	of test statistic in	testing the signifi	icance of difference			
Option A:	t=10.77						
Option B:	t=9.39						
Option C:	t=8.5						
Option D:	t=6.95						
3.	If X is a poisson var	iate such that $P(X =$	1) = $P(X = 2)$, the	P(X=3) is			
Option A:	4e ²		, , , , , , , , , , , , , , , , , , , ,				
	3						
Option B:	4e ²						
Option C:	4						
0 5	$3e^2$						
Option D:	$\frac{4}{e^2}$						
	e ²						

4.	[1 0 0]
	If $A = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, Then following is not the eigenvalue of adj A.
Option A:	6
Option B:	2
Option C:	4
Option D:	3
5.	For the matrix $\begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ the eigenvector corresponding to the distinct
	eigenvalue $\lambda = 2$ is
Option A:	
Option B:	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$
Option C:	[2]
Option D:	
_	
6.	The necessary and sufficient condition for a square matrix to be diagonalizable is that for each of it's eigenvalue
Option A:	algebraic multiplicity > geometric multiplicity
Option B:	algebraic multiplicity = geometric multiplicity
Option C:	algebraic multiplicity < geometric multiplicity
Option D:	algebraic multiplicity ≠ geometric multiplicity
7.	If the characteristic equation of a matrix A of order 3×3 is $\lambda^3 - 7\lambda^2 + 11\lambda - 5 = 0$, then by the Cayley-Hamilton theorem A^{-1} is equal to
Option A:	$\frac{1}{5}(A^3 - 7A^2 + 11A)$
Option B:	$\frac{1}{5}(A^2 + 7A + 11I)$
Option C:	$\frac{\frac{1}{5}(A^2 + 7A + 11I)}{\frac{1}{5}(A^3 + 7A^2 + 11A)}$
Option D:	
	$\frac{1}{5}(A^2 - 7A + 11I)$
8.	Value of an integral $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x^2$ is
Option A:	$\frac{5}{6} - \frac{i}{6}$
Option B:	$-\frac{5}{6} - \frac{i}{6}$
Option C:	$ \begin{array}{c c} 5 & i \\ \hline 6 & 6 \\ \hline -5 & i \\ \hline -5 & i \end{array} $
Option D:	-5 i
Phon B.	$\left \frac{1}{6} + \frac{1}{6} \right $
i	1

9.	Integral $\int \frac{5z^2+7z+1}{z+1} dz$ along a circle $ z = \frac{1}{2}$ is equal to
Option A:	1
Option B:	-1
Option C:	3/2
Option D:	0
10.	Analytic function gets expanded as a Laurent series if the region of convergence is
Option A:	rectangular
Option B:	triangular
Option C:	circular
Option D:	annular
11.	Residue of $f(z) = \frac{z^2}{(z+1)^2(z-2)}$ at a pole $z=2$ is
Option A:	4/9
Option B:	2/9
Option C:	1/2
Option D:	0
10	1
12.	z-transform of an unit impulse function $\delta(k) = \frac{1}{0}$, at $k = 0$ is
Option A:	1
Option B:	0
Option C:	-1
Option D:	k
13.	$z\{\sin(3k+5)\}, \ k \ge 0$ is
Option A:	$z^2 \sin 2 - z \sin 5$
	$\overline{z^2 - 2z\cos 3 + 1}$ $z^2 \sin 5 + z \sin 2$
Option B:	
	$\overline{z^2 - 2z\cos 3 + 1}$
Option C:	$z^2 \sin 5 - z \sin 2$
	$z^2 - 2z\cos 3 + 1$
Option D:	$z^2 \sin 2 + z \sin 5$
	$z^2 - 2z\cos 3 + 1$
14.	The inverse z-transform of $f(z) = \frac{z}{(z-1)(z-2)}$, $ z > 2$ is
Option A:	2^k-2
Option B:	2^k-1
Option C:	$2^k + 1$
Option D:	$2^k + 2$
15.	If the basic solution of LPP is $x = 1$, $y = 0$ then the solution is
Option A:	Feasible and non-Degenerate
Option B:	Non-Feasible and Degenerate
Option C:	Feasible and Degenerate
Option D:	Non-Feasible and non-Degenerate

]								
16.	If the primal LPP has an unbounded solution then the dual has								
Option A:	Unbounded solution								
Option B:	Bounded solution								
Option C:	Feasible solution								
Option D:	Infeasible solution								
option B.	Intensione solution								
17.	Dual of the following LPP is								
277	Maximize $z = 2x_1 + 9x_2 + 11x_3$								
	$x_1 - x_2 + x_3 \ge 3$								
	Subject to $-3x_1 + 2x_3 \le 1$								
	$2x_1 + x_2 - 5x_3 = 1$								
	$ x_1, x_2, x_3 \ge 0$								
Option A:	Minimize $w = -3y_1 + y_2 + y'$								
Option A.	$-y_1 - 3y_2 + 2y' \ge 2$								
	Subject to $y_1 + y' \ge 9$								
	- I								
	$-y_1 + 2y_2 - 5y' \ge 11$								
Option B:	$y_1, y_2 \ge 0$, y' unrestricted Minimize $w = -3y_1 + y_2 + y_3$								
Option B.	$-y_1 - 3y_2 + 2y_3 \ge 2$								
	Subject to $y_1 + y_3 \ge 9$								
	$-y_1 + 2y_2 - 5y_3 \ge 11$								
	$y_1, y_2, y_3 \ge 0$								
Option C:	Minimize $w = 2y_1 + 9y_2 + 11y'$								
opusii e.	$-y_1 - 3y_2 + 2y' \ge 3$								
	Subject to $y_1 + y' \ge 1$								
	$-y_1 + 2y_2 - 5y' \ge 1$								
	$y_1, y_2 \ge 0$, y' unrestricted								
Option D:	Minimize $w = 2y_1 + 9y_2 + 11y_3$								
opiion 2.	$-y_1 - 3y_2 + 2y_3 \ge 3$								
	Subject to $y_1 + y_3 \ge 1$								
	$-y_1 + 2y_2 - 5y_3 \ge 1$								
	$y_1, y_2 \ge 0$, y' unrestricted								
18.	Consider the NLPP:								
	Maximize $z = f(x_1, x_2)$, subject to the constraint $h = g(x_1, x_2) - b \le 0$.								
	Let $L = f - \lambda g$, then the Kuhn-Tucker conditions are								
Option A:	$\frac{\partial L}{\partial x_1} \ge 0, \qquad \frac{\partial L}{\partial x_2} \ge 0, \qquad \lambda h \ge 0, \qquad h \ge 0, \qquad \lambda \ge 0$ $\frac{\partial L}{\partial x_1} = 0, \qquad \frac{\partial L}{\partial x_2} = 0, \qquad \lambda h = 0, \qquad h \le 0, \qquad \lambda \ge 0$ $\frac{\partial L}{\partial x_1} = 0, \qquad \frac{\partial L}{\partial x_2} = 0, \qquad \lambda h \ge 0, \qquad h \le 0, \qquad \lambda \le 0$ $\frac{\partial L}{\partial x_1} \ge 0, \qquad \frac{\partial L}{\partial x_2} \ge 0, \qquad \lambda h \ge 0, \qquad h \ge 0, \qquad \lambda = 0$								
	$\frac{\partial x_1}{\partial x_1} = 0, \frac{\partial x_2}{\partial x_2} = 0, \lambda n \ge 0, n \ge 0$								
Option B:	$\frac{\partial L}{\partial L} = 0$								
	$\frac{\partial x_1}{\partial x_1} = 0, \frac{\partial x_2}{\partial x_2} = 0, \lambda n = 0, n \le 0, \lambda \ge 0$								
Option C:	$\partial L = 0$ $\partial L = 0$ $\lambda = 0$ $\lambda = 0$								
	$\frac{\partial x_1}{\partial x_1} = 0, \frac{\partial x_2}{\partial x_2} = 0, \lambda n \ge 0, n \le 0, \lambda \le 0$								
Option D:	$\partial \hat{L} = \partial \hat{L}$								
-	$\frac{\partial x_1}{\partial x_1} \ge 0, \frac{\partial x_2}{\partial x_2} \ge 0, \lambda n \ge 0, h \ge 0, \lambda = 0$								
19.	In a non-linear programming problem,								
Option A:	All the constraints should be linear								
Option B:	All the constraints should be non-linear								

Option C:	Either the objective function or atleast one of the constraints should be non-linear
Option D:	The objective function and all constraints should be linear.
20.	Pick the non-linear constraint
Option A:	$xy + y \ge 7$
Option B:	$2x - y \le 5$
Option C:	$x + y \le 6$
Option D:	x + 2y = 9

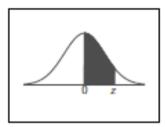
Subjective/descriptive questions

Q2	Solve any Four out of Six5 marks each
(20 Marks)	
A	In an exam taken by 800 candidates, the average and standard deviation of marks obtained (normally distributed) are 40% and 10% respectively. What should be the minimum score if 350 candidates are to be declared as passed
В	If $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$, By using Cayley-Hamilton theorem find the matrix represented by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 + 2A + I$
С	Evaluate the following integral using Cauchy-Residue theorem. $I = \int_C \frac{z^2 + 3z}{\left(z + \frac{1}{4}\right)^2 (z - 2)} dz \text{ where c is the circle } \left z - \frac{1}{2}\right = 1$
D	Obtain inverse z-transform $\frac{z+2}{z^2-2z-3}$, $1 < z < 3$
Е	Solve by the Simplex method Maximize $z = 10x_1 + x_2 + x_3$ Subject to $x_1 + x_2 - 3x_3 \le 10$ $4x_1 + x_2 + x_3 \le 20$ $x_1, x_2, x_3 \ge 0$
F	Using Lagrange's multipliers solve the following NLPP Optimise $z = 4x_1 + 8x_2 - x_1^2 - x_2^2$ Subject to $x_1 + x_2 = 2$ $x_1, x_2 \ge 0$

Q3 (20 Marks)	Solve any Four (out of Six5	marks eac	h					
		When the first proof of 392 pages of a book of 1200 pages were read, the distribution of printing mistakes were found to be as follows.							
A	No of mistakes in page (X)	0	1	2	3	4			
	No. of pages (f)	275	72	30	7	5			
	Fit a poisson distr	ribution to	the above d	ata and tes	t the goodne	ess of fit.			

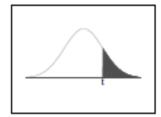
В	Show that the matrix $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$ is not diagonalizable.
С	If $f(z) = \frac{z-1}{(z-3)(z+1)}$ obtain Taylor's and Laurent's series expansions of $f(z)$ in the domain $ z < 1 \& 1 < z < 3$ respectively.
D	If $f(k) = \frac{1}{2^k} * \frac{1}{3^k}$ find $z\{f(k)\}, k \ge 0$
Е	Solve using dual simplex method Minimize $z = 2x_1 + 2x_2 + 4x_3$ $2x_1 + 3x_2 + 5x_3 \ge 2$ Subject to $3x_1 + x_2 + 7x_3 \le 3$ $x_1 + 4x_2 + 6x_3 \le 5$ $x_1, x_2, x_3 \ge 0$
F	Solve following NLPP using Kuhn-Tucker method Maximize $z = 2x_1^2 - 7x_2^2 - 16x_1 + 2x_2 + 12x_1x_2 + 7$ Subject to $2x_1 + 5x_2 \le 105$ $x_1, x_2 \ge 0$

Standard Normal Distribution Table



Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
0.1	.0398	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
0.2	.0793	.0832	.0871	.0910	.0948	.0987	.1026	.1064	.1103	.1141
0.3	.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
0.4	.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
0.5	.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
0.6	.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
0.7	.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
0.8	.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
0.9	.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
1.0	.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
1.1	.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
1.2	.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
1.3	.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
1.4	.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
1.5	.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429	.4441
1.6	.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
1.7	.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
1.8	.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
1.9	.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
2.0	.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
2.1	.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	.4857
2.2	.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.4890
2.3	.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.4916
2.4	.4918	.4920	.4922	.4925	.4927	.4929	.4931	.4932	.4934	.4936
2.5	.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.4952
2.6	.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.4964
2.7	.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.4974
2.8	.4974	.4975	.4976	.4977	.4977	.4978	.4979	.4979	.4980	.4981
2.9	.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.4986
3.0	.4987	.4987	.4987	.4988	.4988	.4989	.4989	.4989	.4990	.4990
3.1	.4990	.4991	.4991	.4991	.4992	.4992	.4992	.4992	.4993	.4993
3.2	.4993	.4993	.4994	.4994	.4994	.4994	.4994	.4995	.4995	.4995
3.3	.4995	.4995	.4995	.4996	.4996	.4996	.4996	.4996	.4996	.4997
3.4	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4997	.4998
3.5	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998	.4998

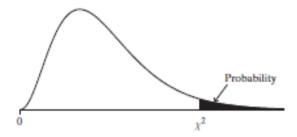
t-Distribution Table



The shaded area is equal to α for $t = t_{\alpha}$.

df	t.100	t.050	$t_{.025}$	$t_{.010}$	t.005
1	3.078	6.314	12.706	31.821	63.657
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
30	1.310	1.697	2.042	2.457	2.750
32	1.309	1.694	2.037	2.449	2.738
34	1.307	1.691	2.032	2.441	2.728
36	1.306	1.688	2.028	2.434	2.719
38	1.304	1.686	2.024	2.429	2.712
00	1.282	1.645	1.960	2.326	2.576

TABLE C: Chi-Squared Distribution Values for Various Right-Tail Probabilities



	Right-Tail Probability									
df	0.250	0.100	0.050	0.025	0.010	0.005	0.001			
1	1.32	2.71	3.84	5.02	6.63	7.88	10.83			
2	2.77	4.61	5.99	7.38	9.21	10.60	13.82			
3	4.11	6.25	7.81	9.35	11.34	12.84	16.27			
5	5.39	7.78	9.49	11.14	13.28	14.86	18.47			
	6.63	9.24	11.07	12.83	15.09	16.75	20.52			
6	7.84	10.64	12.59	14.45	16.81	18.55	22.46			
7	9.04	12.02	14.07	16.01	18.48	20.28	24.32			
8	10.22	13.36	15.51	17.53	20.09	21.96	26.12			
9	11.39	14.68	16.92	19.02	21.67	23.59	27.88			
10	12.55	15.99	18.31	20.48	23.21	25.19	29.59			
11	13.70	17.28	19.68	21.92	24.72	26.76	31.26			
12	14.85	18.55	21.03	23.34	26.22	28.30	32.91			
13	15.98	19.81	22.36	24.74	27.69	29.82	34.53			
14	17.12	21.06	23.68	26.12	29.14	31.32	36.12			
15	18.25	22.31	25.00	27.49	30.58	32.80	37.70			
16	19.37	23.54	26.30	28.85	32.00	34.27	39.25			
17	20.49	24.77	27.59	30.19	33.41	35.72	40.79			
18	21.60	25.99	28.87	31.53	34.81	37.16	42.31			
19	22.72	27.20	30.14	32.85	36.19	38.58	43.82			
20	23.83	28.41	31.41	34.17	37.57	40.00	45.32			
25	29.34	34.38	37.65	40.65	44.31	46.93	52.62			
30	34.80	40.26	43.77	46.98	50.89	53.67	59.70			
40	45.62	51.80	55.76	59.34	63.69	66.77	73.40			
50	56.33	63.17	67.50	71.42	76.15	79.49	86.66			
60	66.98	74.40	79.08	83.30	88.38	91.95	99.61			
70	77.58	85.53	90.53	95.02	100.4	104.2	112.3			
80	88.13	96.58	101.8	106.6	112.3	116.3	124.8			
90	98.65	107.6	113.1	118.1	124.1	128.3	137.2			
100	109.1	118.5	124.3	129.6	135.8	140.2	149.5			