University of Mumbai Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 1st June 2021 to 10th June 2021

Program: BE(CIVIL)

Curriculum Scheme: Rev2019 'C' Scheme

Examination: SE Semester IV

Course Code: CEC401 and Course Name: Engineering Mathematics-IV

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks							
1.	Find the value of a if $\overline{F} = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal							
Option A:	<i>a</i> = 2							
Option B:	a = -2							
Option C:	a = -4							
Option D:	a = 4							
2.	Vector field is Irrotational if							
Option A:	$\nabla \times \vec{f} = 0$							
Option B:	$\nabla \cdot \vec{f} = 0$							
Option C:	$\nabla \times \vec{f} \neq 0$							
Option D:	$\nabla \cdot \vec{f} = 1$							
3.	The residue at the pole z =-1 of $f(z) = \frac{1}{(z+1)(z-2)^2}$ is							
Option A:	1/3							
Option B:	-1/3							
Option C:	1/9							
Option D:	-1/9							
4.	The poles of $f(z) = \frac{3z-1}{(z+1)(z-2)}$ are							
Option A:	1,-2							
Option B:	-1,-2							
Option C:	-1,2							
Option D:	1,2							
5.	Value of $\int_c \frac{\sin 2z dz}{(z + \pi/3)^4} dz$ is where C: $ z = 2$							
Option A:	$4\pi i/3$							
Option B:	$\pi i/3$							
Option C:	$2\pi i/3$							
Option D:	4πi							
6.	The value of $\int_0^{1+i} \bar{z} dz$ along straight line y=x is							
Option A:	0							
Option B:	2							

Option C:	3								
Option D:	1								
-									
7.	If the two regression coefficient are $-8/15$ and $-5/6$ then the correlation coefficient is								
Option A:	0.667								
Option B:	- 0.507								
Option C:	-0.667								
Option D:	0.607								
-									
8.	Line of regression y on x is $8x-10y+66=0$. Line of regression x on y is $40x-18y-214=0$. The value of variance of y is 16. The standard deviation of x is								
Option A:	3								
Option B:	2								
Option C:	6								
Option D:	7								
9.	$\Sigma xy = 2638$, $\bar{x} = 14$, $\bar{y} = 17$, n=10 then cov (x,y) is								
Option A:	24.9 - 2000, x - 11, y - 17, n - 10 then $cov(x, y)$ is								
Option B:	25.8								
Option C:	23.0								
Option D:	20.5								
option 2.									
10.	Least square fit for the straight line $y=ax + b$ to the data								
	y 5 7 9								
Option A:	y = 2x + 4								
Option B:	y = 2x - 3								
Option C:	y = 2x + 3								
Option D:	y = 3x - 4								
11.	A random variable X has the following probability distribution. The value of K is								
	x 2 3 4 5								
	P(x) 5/K 7/K 9/K 11/K								
Option A:	16								
Option B:	8								
Option C:	48								
Option D:	32								
1									
12.									
	In Poisson distribution if $n = 100$, $p = 0.01$, then the value of P ($r = 0$)								
Option A:	1/e								
Option B:	2/e								
Option C:	3/e								
Option D:	1/4e								
13.	A continuous random variable X has pdf								
	$f(x) = kx; 0 \le x \le 1$ and k; $1 \le x \le 2$.then the value of k								
Option A:	2								
Option B:	2/3								

Option C:	3/2
Option D:	3
14.	If random variable X takes the values of $x = 1,2,3$ with corresponding Probabilities 1/6, 2/3 1/6 then E(x) is
Option A:	1
Option B:	3
Option C:	4
Option D:	2
· ·	
15.	Number of road accident on a highway during a month follows a Poisson distribution with mean 2. Probability that in certain month number of accidents in the highway will be equal to 2 is
Option A:	0.354
Option B:	0.2707
Option C:	0.435
Option D:	0.521
1	
16.	In a normal distribution when mean is 1 and S.D =3 then for the intervals -1.43 $\leq x \leq 6.19$ (for z = -0.81, A= 0.2910, for z =1.73, A = 0.4582)
Option A:	0.7492
Option B:	0.4582
Option C:	0.2910
Option D:	0.1672
17.	X is normally distributed $\mu = 15$, $\sigma^2 = 9$. Given that for z=1, A=0.3413 P(X \ge 18) is given by
Option A:	0.1587
Option B:	0.4231
Option C:	0.2231
Option D:	0.3413
18.	In normal distribution. The area under standard normal curve to the right of y axis is
Option A:	1
Option B:	0
Option C:	0.5
Option D:	0.6
19.	If observed frequencies are 5,10,15 and expected frequencies are each equal to 10 then chi square value is
Option A:	20
Option B:	10
Option C:	15
Option D:	5
· ·	
20.	Among 64 offspring of a certain cross between guinea pig 34 were red,10 were black and 20 were white, According to genetic model these number should in the ratio 9:3:4. Expected frequencies in the order
Option A:	36,12,16
Option B:	12,36,16
Option C:	20,12,16

Q2	Solve any Four out of Six5 marks									
А	<i>Evaluate by Green's theorem for the field</i> $\vec{F} = x^2 \hat{i} + xy \hat{j}$ over the region <i>R</i> enclosed by $y=x^2$ and line $y=x$									
В	Evaluate $\int_{c} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)} dz$; c is $ z = 3$									
C	Determine the coefficient of correlation between X & Y from the following data									
C	X :	51 5	54	56	59	65	60	70		
	Y 3	38 4	4	33	36	33	23	13		
D	 There is working women's hostel in a town where 75 % are from neighboring town, the rest all are from same town. 48% of women who hail from same town are graduates and 83 % of the women who have come from neighboring town are also graduates. Find the probability that a woman selected at a random is graduates from the same town. In a certain examination test 2000 students appeared in a subject of statistics. Average marks obtained were 50% with standard deviation 5%. How many students do you expect to obtain more than 60% of marks, supposing that marks are distributed normally? (For z =2, A =0.4772) The following table gives the number of accidents in a district during a week. Apply chi-square test to find whether the accidents are uniformly 									
F	distributed Day No.of accidents (Table va	Sun 13 lue of x	week. Mon 12 $r^2 = 1$	Tue	$\frac{s}{9}$	ed T	Thu 15 of sig	<u>Fri</u> 10 nifica:	Sat 14 $nce = 5%$	

Q3	Solve any Four out of Six								5 marks each		
А	Evaluate using Stokes theorem $\iint_{s} (\nabla \times \overline{f}) \cdot \widehat{n} ds$ where <i>s</i> is curve surface of the paraboloid $x^{2} + y^{2} = 2z$ bounded by the plane $z=2$ where $\overrightarrow{f} = 3(x - y)\overrightarrow{i} + 2x\overrightarrow{j} + xy\overrightarrow{k}$										
В	Obtain Laurent's series expansions of $f(x) = \frac{z-1}{z^2-2z-3}$; $ z > 3$										
С	Calculate the Spearman's rank correlation coefficient for the following data.										
	x 32 y 40	55 30	49 70	60 20	43 30	37 50	43 72	49 60	10 45	20 25	
D	A C.R.V X has the following pdf. $f(x) = k(x - x^2)$; $0 \le x \le 1$ Find K and mean										
Е	Ten individuals are chosen at random from a population & their height are found to be (inches): 63,63,64,65,66,69,70,70 &71. In the light of the data, discuss the suggestion that the mean height in the population is 66 inches. (Table value of t_{α} =2.6, d.f =9. <i>level of significance</i> = 5%))										
F	Standard dev 11.85. Can it population w 3.51 <i>for d</i> .	viation of t be convith the to. f. 8&	of two s cluded same s 12 & <i>l</i>	sample that th tandarc $F_{0.025} =$	s of size e samp l deviat = 4.20	e 9 & 1 les wer ion? (C for d. e	3 were re draw Given F o. f. 12	found n from $r_{0.025} = $ & 8)	to be 1 the nor	2.15 & mal	