AC 05/05/2018 Item No. 4.56

From Co-Coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

Program Educational Objectives (PEOs)

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- > Graduates will undertake research activities in emerging multidisciplinary fields.

Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VII

Course	Course Name		eaching Sch Contact Ho			Credits A	Assigned	
Code		Theo ry	Practica l	Tutoria l	Theory	Practical	Tutoria l	Total
ISC701	Industrial Process Control	4	-	-	4	-	-	4
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4
ISC703	Industrial Automation	4	-	-	4	-	-	4
ISDLO70 3X	Department Level Optional Course III	4	-	-	4	-	-	4
ILO701X	Institute Level Optional Course I	3	-	-	3	-	-	3
ISL701	Industrial Process Control – Lab Practice	-	2	-	-	1	-	1
ISL702	Biomedical Instrumentation – Lab Practice	-	2	-	-	1	-	1
ISL703	Industrial Automation – Lab Practice	-	2	-	-	1	-	1
ISL704	Department Level Optional Course III – Lab Practice	-	2	-	-	1	-	1
ISL705	Project I	-	6	-	-	3	-	3
	Total	19	14	-	19	07	-	26

Examination Scheme for Semester VII

		The	eory				-	
Course	Course Name	End Sem Exam	Internal Assessment	Term Work	Oral	Pract. & Oral		
Course Code	_	(ESE)	(IA)				Total Marks	
		Max	Max	Max	Max	Max		
		Marks	Marks	Marks	Marks	Marks		
ISC701	Industrial Process Control	80	20	-	-	-	100	
ISC702	Biomedical Instrumentation	80	20	-	-	-	100	
ISC703	Industrial Automation	80	20	-	-	-	100	
ISDLO7 03X	Department Level Optional Course III	80	20	-	-	-	100	
ILO701 X	Institute Level Optional Course I	80	20	-	-	-	100	
ISL701	Industrial Process Control – Lab Practice	-	-	25	25	-	50	
ISL702	Biomedical Instrumentation – Lab Practice	-	-	25	25	-	50	
ISL703	Industrial Automation – Lab Practice	-	-	25	25	-	50	
ISL704	Department Level Optional Course III – Lab Practice	-	-	25	25	-	50	
ISL705	Project I	-	-	50	50	-	100	
	Total	400	100	150	150	-	800	

Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

Scheme for Semester VIII

Course	Course Name		aching Scl Contact Ho		Credits Assigned			
Code		Theo ry	Practic al	Tutoria l	Theory	Practic al	Tutori al	Total
ISC801	Instrumentation Project Documentation and Execution	4	-	-	4	-	-	4
ISC802	Instrument and System design	4	-	-	4	-	-	4
ISDLO80 4X	Department Level Optional Course IV	4	-	-	4	-	-	4
ILO802X	Institute Level Optional Course II	3	-	-	3	-	-	3
ISL801	Instrumentation Project Documentation and Execution	-	2	-	-	1	-	1
ISL802	Instrument and System design	-	2	-	-	1	-	1
ISL803	Department Level Optional Course IV – Lab Practice	-	2	-	-	1	-	1
ISL804	Project II	-	12	-	-	6	-	6
	Total	15	18	-	15	09	-	24

Examination Scheme for Semester VIII

			Exami	nation Scheme			
		The					
Course Code	Course Name	End Sem Exam (ESE)	Internal Assessment (IA)	Term Work	Oral	Pract. & Oral	Total Marks
Couc		Max Marks	Max Marks	Max Marks	Max Marks	Max Marks	
ISC801	Instrumentation Project Documentation and Execution	80	20	-	-	-	100
ISC802	Instrument and System design	80	20	-	-	-	100
ISDLO804X	Department Level Optional Course IV	80	20	-	-	-	100
ILO802X	Institute Level Optional Course II	80	20	-	-	-	100
ISL801	Instrumentation Project Documentation and Execution	-	-	25	25	-	50
ISL802	Instrument and System design	-	-	25	25	-	50
ISL803	Department Level Optional Course IV– Lab Practice	-	-	25	25	-	50
ISL804	Project II	-	-	100	50	-	150
	Total	320	80	175	125	-	700

Subject Code	Subject Name	Tea	ching Sch	eme	Credits Assigned			
	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISC701	Process Control	4	-	-	4	-	-	4

Subject Code	Subject Name	Examination scheme										
			Theory	Marks (100))		Pract.					
		Internal Assessment (20)			End Sem	Term work	and Oral	Oral	Total			
		Test1	Test2	Avg.	Exam		Orai					
ISC701	Industrial Process Control	20	20	20	80	-	-	_	100			

Subject Code	Subject Name	credits
ISC701	Industrial Process Control	4
Course objectives	 To impart the knowledge of different industrial unit operations. To make the students capable to design and develop instrumentation and control schemes for industrial process To give them overview of various process industries, hazardous areas and their classification. 	ses.
Course Outcomes	 The students will be able to: Explain working and control of various heat transfer unit operations Explain working and control of various heat and mass tranunit operations Explain the miscellaneous process equipment and their co Describe the processes of various continuous process industries and instrumentation involved in them. Describe the processes of various batch process industri instrumentation involved in them. 	ontrol
	6. Classify hazardous areas in the industry.	

Prerequisite: Temperature, flow, pressure sensors, fundamentals of process instrumentation and control, control schemes like feedback, feedforward, cascade, split range, selective etc., basics of unit operations.

Module	Content	Hrs	CO Mapping
	 Control System for Heat transfer unit operations: Introduction to unit operations and processes, concept of heat transfers and energy balance, heat transfer coefficient. Heat exchanger control: classification as per fluid flow arrangement and construction, feedback, feed-forward, bypass control schemes, fouling in heat exchangers. 		
1	 Boiler control: Types, working and operation of boilers, Terms related-Shrink and swell effect and excess oxygen, boiler efficiency, boiler performance terminology. Boiler controls- Drum level control- Single, two and three elements, and Combustion Control-Type 1, 2, 3 and 4, steam temperature control, boiler pressure control, furnace draft control, Burner Management System. Evaporator control: Evaporator terminologies, Types of Evaporator, mathematical model for evaporator, control systems for Evaporator – feedback, cascade, feed forward and selective control. Furnace control: Start- up heaters, fired re-boilers, process and safety controls. 	13	CO1
2	 Control System for Heat and mass transfer unit operations: Distillation column: Basic principle, Distillation equipment and its accessories. Batch and continuous distillation, Binary product distillation, multi-product distillation, side-draw product distillation column. Distillation column control strategies- Top and bottom product composition controls, Using chromatograph, Pressure controls, Vacuum distillation, Vapors recompression and pressure control, Feed controls- Column feed controls and Feed temperature control, economizer. Dryer control: Process of drying, types of dryer- Tray, Vacuum dryer, fluidized bed, Double drum dryer, rotary, turbo and spray, and their control strategies. Crystallizers: Process of crystallization, Super-saturation methods, types of crystallizers. Reactor control: Reactor characteristics, runaway reaction, various schemes of temperature control of reactors. 	12	CO2
3	 Miscellaneous process equipment: Compressor- Classification, Phenomenon of Surge for centrifugal compressors, Methods of surge control for compressors. Gas turbine- Introduction, gas turbine layouts, closed cycle gas turbine, Engine controls. 	05	CO3
4	Continuous Process Industries: Refinery Industry: Process flow diagram, separation, Treatment-Hydro- desulphurization unit, conversion methods- Fluid Catalytic Cracking, blending, sensors and control schemes.	07	CO4

	Iron and steel Industry: Process flow diagram, Sensors and Control schemes.		
5	Batch Process Industries:Food processing: Milk pasteurization.Pharmaceutical industries-Penicillin-G production, sensors and controlschemes.	07	CO5
6	Safety in Instrumentation control systems: Area and material classification as per IEC and NEC standard, techniques used to reduce explosion hazards, intrinsic safety, and installation of intrinsically safe systems.	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. W. L. McCabe and Julian Smith, "Unit operation and chemical engineering", Tata McGraw Hill, Sixth edition, 2001.
- 2. Bela G. Liptak, "Instrument engineers handbook Process control", Chilton book company, third edition, 1995.
- 3. Bela G. Liptak, "Instrumentation in the processing industries", Chilton book company-first edition, 1973.

- 1. Douglas M. Considine, "Process industrial instruments and controls handbook", McGraw Hill- 4th edition, 1993.
- 2. George T. Austin, "Shreve's chemical process industries", Mc-GrawHill- fifth edition, 1984.
- 3. George Stephenopoulos, "Chemical process control", PHI-1999.
- 4. David Lindsey, "Power Plant control and instrumentation control of boilers HRSG", Institution of Engineering and Technology,
- 5. G.F. Gilman "Boiler Control Systems Engineering", ISA Publication, 2005,
- 6. A.M.Y.Razak, Industrial gas turbines Performance and operability", CRC Press Woodhead

Publishing Limited and CRC Press LLC, 2007.

Sub code	ub code Subject Name		Teaching Scheme (Hrs)				Credits Assigned			
Sub coue	Subject Mame	Theory	Pract	Tut.	Theory	Pract.	Tut.	Total		
ISC702	Biomedical Instrumentation	4	-	-	4	-	-	4		

		Examination Scheme								
		Theory (out of 100)					Pract.			
Sub code	Subject Name	ne Internal Assessme (out of 20)			End sem	Term Work	and oral	Ora l	Total	
		Test 1	Test 2	Avg	Exam		01 a1			
ISC702	Biomedical Instrumentation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	Credits
ISC702	Biomedical Instrumentation	4
Course Objectives	 To make students understand the Identification, classification, and principle of various Biomedical Instruments used for Biomeasurement To make students understand the application of the various biomedical in in diagnosis, therapeutic and imaging fields. 	o-potential
Course Outcomes	 The students will be able 1. To identify various Bio-potential with their specifications and perform measurements. 2. To discuss various Physiological systems and to identify their parame related measurements. 3. To explain the principle and working of various cardiovascular parame their measurement techniques with applications. 4. To relate between the different life support instruments and to describ applications. 5. To distinguish between the various medical imaging techniques based principles and concepts involved in them. 6. To describe the significance of electrical safety in biomedical measurement 	eters and neters and be their l on the

Module	Topics	Hrs.	CO Mapping
1	Bio-Potentials and their Measurement: Structure of Cell, Origin of Bio-potential, electrical activity of cell and its characteristics and specifications. Measurement of RMP and AP. Electrode-Electrolyte interface and types of bio-potential electrodes.	06	CO1
2	 Physiological Systems and Related Measurement: Respiratory system- Physiology of respiration and measurements of respiratory related parameters. Nervous system- Nerve cell, neuronal communication, nervemuscle physiology, CNS, PNS. Generation of EEG and study of its characteristics. Normal and abnormal EEG, evoked potential and epilepsy. Muscular system- Generation of EMG signal, specification and measurement. 	12	CO2
	 Cardiovascular system- Structure of Heart, Electrical and Mechanical activity of Heart, ECG measurements and Cardiac arrhythmias. Design of ECG amplifier. 		
3	 Cardiovascular Measurement: Blood Pressure- Direct and Indirect types. Blood Flow- Electromagnetic and Ultrasonic types. Blood Volume- Types of Plethysmography. (Impedance, Capacitive and Photoelectric) Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type. Heart sound measurement. 	08	CO3
4	 Life support Instruments: Patient monitoring system - Bedside monitors, Central nurse station Pacemaker- Types of Pacemaker, mode of pacing and its application. Defibrillator- AC and DC Defibrillators and their application. Heart Lung machine and its application during surgery. Hemodialysis system and the precautions to be taken during dialysis. Ventilator system and its important parameters for monitoring 	10	CO4
5	 Imaging Techniques: * X-Ray machine and its application. CT Scan- CT Number, Block Diagram, scanning system and application. Ultrasound Imaging- Modes of scanning and their application. MRI- Concepts and image generation, block diagram and its application. Introduction to Functional imaging. 	10	CO5
6	Significance of Electrical Safety: Physiological effects of electrical current, Shock Hazards from electrical equipment and methods of accident prevention.	02	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2) John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3) R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004

- 1) Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 3) John E Hall, Gyton's Medical Physiology, 12th edition, 2011
- 4) L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISC703	Industrial	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Automation	4	-	-	4		-	4

Sub	Subject	Examin	Examination scheme									
Code	Name	Theory	Theory (100)				Pract.	Oral	Total			
		Internal Assessment(20)			End sem	work	and Oral					
		Test1	Test 2	Avg.	Exam							
ISC703	Industrial Automation	20	20	20	80	-	-	-	100			

Subject Code	Subject Name	credits							
ISC703	Industrial Automation	ial Automation 4							
Course objective	• To impart knowledge about the fundamentals of automation and various automation systems used in industry.								
	• To impart the knowledge about the architecture, we applications of PLC, DCS and SCADA	To impart the knowledge about the architecture, working and applications of PLC, DCS and SCADA							
	• To make the students understand the requirements Instrumented System (SIS).	of Safety							
Course Outcome	The students will be able to								
	1. Describe automation, need, importance and appli industry.								
	2. Identify components of PLC, and develop PLC lac instructions of PLC and design PLC based appli- proper selection and sizing criteria	0							
	3. Explain evolution and architecture of DCS, hierarchie in DCS, programming DCS through Function Block (FBD) method.								
	4. Describe SCADA architecture, communication in SC develop any application based on SCADA along using SCADA software.								
	5. Explain database and alarm management system6. Recognize the need of SIS and describe risk reduction	methods.							

Prerequisite: Knowledge of Digital Electronics, Process Instrumentation and Control.

Module	Content	Hrs.	CO Mapping
1	Automation FundamentalsAutomation, Need for automation and its importance, Types of automation, Automation applications, Expectations of automation.Process and factory automation.Types of plant and control – categories in industry, open loop and closed loop control functions, continuous processes, discrete processes, and mixed processes.Automation hierarchy – large control system hierarchy, data quantity 	04	CO1
2	 Programmable Logic Controller Hardware Evolution of PLC, Definition, functions of PLC, Advantages, Architecture, working of PLC, Scan time, Types & Specifications. Safety PLC DI-DO-AI-AO examples and ratings, I/O modules, local and remote I/O expansion, special purpose modules, wiring diagrams of different I/O modules, communication modules, Memory & addressing- memory organization (system memory and application memory), I/O addressing, hardware to software interface. Software Development of Relay Logic Ladder Diagram, introduction to PLC Programming, programming devices, IEC standard PLC programming languages, LD programming-basic LD instructions, PLC Timers and Counters: Types and examples, data transfer & program control instructions, advanced PLC instructions, PID Control using PLC. Case study: PLC selection and configuration for any one process applications. 	14	CO2
3	Distributed Control System (DCS) Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Controller, Input and output modules, Communication module, data highway, local I/O bus, Workstations, Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task. Supervisory computer tasks, DCS configuration, Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS & Supervisory computer displays, advanced control Strategies, computer interface with DCS. DCS System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks. Introduction to DCS Programming, Function Block Diagram method for DCS programming.	12	CO3

4	Supervisory Control and Data Acquisition (SCADA)	10	CO4
	SCADA introduction, brief history of SCADA, elements of		
	SCADA.		
	Features of SCADA, MTU- functions of MTU, RTU- Functions of		
	RTU, Protocol Detail, Specifications of SCADA		
	SCADA as a real time system Communications in SCADA- types &		
	methods used, components, Protocol structure and Mediums used		
	for communications.		
	SCADA Development for any one typical application.		
	Programming for GUI development using SCADA software.		
5	Database and Alarm Management, MES, ERP	04	CO5
	Database management, Philosophies of Alarm Management, Alarm		
	reporting, types of alarms generated and acceptance of alarms.		
	Manufacturing Execution System, Enterprise Resource Planning,		
	Integration with enterprise system.		
6	Safety Instrumented System (SIS)	04	CO6
	Need for safety instrumentation- risk and risk reduction methods,		
	hazards analysis. Process control systems and SIS.		
	Safety Integrity Levels (SIL) and availability. Introduction to the		
	international functional safety standard IEC 61508.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Samuel M. Herb, "Understanding Distributed Processor Systems for Control", ISA Publication, 1999.
- 2. Thomas Hughes, "Programmable Logic Controller", ISA Publication, 2001.
- 3. Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication, 2010.
- 4. Gruhn and Cheddie, "Safety Shutdown Systems" ISA, 1998,

- 1. Poppovik Bhatkar, "Distributed Computer Control for Industrial Automation", Dekkar Publication, 1990.
- 2. S.K. Singh, "Computer Aided Process Control", Prentice Hall of India, 2004.
- 3. Krishna Kant, "Computer Based Process Control", Prentice Hall of India
- 4. N.E. Battikha, "The Management of Control System: Justification and Technical Auditing", ISA.

- 5. Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- 6. John. W. Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 3rd edition, Prentice Hall Inc., New Jersey, 1995.
- 7. Bela G. Liptak "Instrument engineer's handbook- Process control" Chilton book company-3rd edition.
- 8. D.J. Smith & K.G.L. Simpson, "Functional Safety: A Straightforward Guide to IEC61508 and Related Standards", -Butterworth-Heinemann Publications.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISDLO7031	Imaga Processing	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
15DL07031	Image Processing	4	-	-	4	-	-	4

					Examinatio	n scheme	e		
	Subject	Theory (out of 100)					Pract.		
Sub Code	Subject Name		Internal essment(End Sem	End Sem Exam		Oral	Total
		Test1	Test2	Avg.	Exam		Oral		
ISDLO7031	Image Processing	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits
ISDLO7031	Image Processing	4
	1. To explain basic principles of Image processing.	
	2. To apply time and frequency domain transformation method on 2	2D Images
	3. To study different Image enhancement techniques in spatial and	l frequency
	domain.	
Course Objectives	4. To study Image restoration techniques to reduce the noise a	nd recover
	original Image.	
	5. To study Lossy and lossless Image compression by different met	hods.
	6. To study Image morphology and segmentation techniques to	o represent
	images into more meaningful and easier to analyze.	
	Students will be able to -	
	1. Describe general terminology of Image processing.	
	2. Examine Images and their analysis by various transformation tec	hniques.
	3. Apply basic Image enhancement operations on Images.	
Course Outcomes	4. Evaluate mathematical tools such as Image morphology a	and Image
	segmentation to extract various Image components.	
	5. Discuss Image compression methods	
	6. Discuss Image degradation and restoration model.	

Prerequisite: Knowledge of Fundamentals of Engineering Mathematics, Basic Operation with Matrices, Signals and Systems and Digital Signal Processing.

Module	Contents	Hrs	CO
			mapping
1	Introduction to Image processing: -Concept of Digital Image,	08	CO1
	Fundamental steps in Image processing, Components of Image		
	processing systems, Elements of visual perception, Image formation		
	model, Sampling and Quantization of Image, Relationships between		
	pixels like neighbours of pixel, Adjacency, Connectivity, Distance		
	measures, Translation, Scaling, Rotation and Perspective projection		
	of Image.		

-		0-	961
2	Image Transformation : -Orthogonal and Orthonormal Function, 2D Discrete Fourier transform and its properties, Fast Fourier transform of Image, Discrete Cosine and Sine transform (2D), Walsh-Hadamard transform, Haar transform, Slant transform, Karhunen-Loeve transform, Introduction to Wavelet transform and its application.	07	CO2
3	Image Enhancement: -Image enhancement in spatial domain, Basic gray level transformation like Image Negatives, Log transformations, Power Law transformations, Contrast stretching, Gray level and Bit plane slicing, Histogram processing, Enhancement using Arithmetic/Logic operation, Smoothing spatial filters, Sharpening spatial filters, Image enhancement in frequency domain, Smoothing frequency domain filters, Sharpening frequency domain filters, Homomorphic filtering.	10	CO3
4	 Morphological Image Processing: Logic operations of Binary Images, Dilation and Erosion, Opening and Closing, Hit or Miss transformation, Boundary extraction, Region filling, Extraction of connected component, Thinning, Thickening, Skeletons. Image Segmentation: Point, Line and Edge detection, Edge linking and boundary detection (Hough Transform), Thresholding, Region based segmentation: Image Registration: Introduction, Geometric transformation, Plane to plane transformation, Image Mapping models, Mutual Information, Entropy, Registration using MI, Introduction to Stereo Imaging 	10	CO4
5	ImageCompression:-NeedofImagecompression,Dataredundancy,Imagecompressionmodel,DifferencebetweenLossyandLosslesscompression,Imagecompressiontechnique(Huffman,Arithmetic,Runlength,LZWcoding),Predictivecoding(DPCM),JPEGandMPEGcompressionstandard.	08	CO5
6	Image Restoration: -Image degradation/Restoration model, Noise models, Probability density function of important noises (Gaussian, Rayleigh, Gamma, Exponential, Uniform, Salt and Pepper), Restoration in presence of noise by spatial filtering (Mean, Median, Midpoint filter), Periodic noise reduction in frequency domain filtering (Band reject, Band pass, Notch filter), Point spread function, Inverse filtering, Weiner filtering.	05	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. Richard E. Woods, Rafael C. Gonzalez, "Digital Image Processing", Pearson, 3rd edition, 2012.
- 2. Jain A.K, "Fundamentals of Digital Image Processing", Pearson,1st edition, 2015.
- 3. B. Chanda, D. Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2nd edition, 2011.

Reference Books

- 1.M. Sonka, Hlavac, "Image Processing, Analysis, and Machine Vision" Cengage,4th edition, 2014.
- 2. Tamal Bose, "Digital Signal and Image Processing", Wiley, 1st edition, 2003.
- 3. William K. Pratt, "Digital Image Processing", Wiley, 4th edition, 2007.

4. Jayaraman , Veerakumar, Esakkirajan, "Digital Image Processing", McGraw Hill, 1st edition, 2009.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Digital Control System	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISDLO7032	Digital Control System	4	-	-	4	-	-	4

			Examination scheme									
		r	Гheory (out of 1	100)	Tomm	Pract.					
Sub Code	Subject Name	Intern	al Assess	sment	End Sem	Term work	and	Oral	Total			
		Test1	Test2	Avg.	Exam	WOLK	Oral					
ISDLO7032	Digital Control System	20	20	20	80	-	-	-	100			

Subject Code	Subject Name	Credits
ISDLO7032	Digital Control System	4
Course Objective	1. To equip the students with the basic knowledge of digital systems	
	2. To obtain the canonical forms of digital control systems	
	3. To test the stability and steady state performance of digital control system.	
	4. To design the controller and observer for digital control systems.	
Course Outcome	Students will be able to	
	1. Understand the advantages and examples of digital control systems.	
	2. Understand the basics of Discretization.	
	3. Represent digital control system as pulse transfer function.	
	4. Determine stability, and steady-state error of discrete time systems.	
	5. Represent given system in different canonical forms.	
	6. Design controller and observer with state space approach.	

Prerequisite: Knowledge of Linear algebra, Fourier Series, Matrix Algebra, and Nyquist stability criterion.

Module	Contents	Hr	CO
		S	
1	Introduction	10	CO1
	Block diagram of Digital Control System, Advantages & limitations of Digital		
	Control System, comparison of continuous data & discrete data control		
	system, Examples of digital control system, data conversion and quantization, sampling period considerations, sampling as impulse modulation, sampled		
	spectra & aliasing, Reconstruction of analog signals, zero order hold, first	I	
	order hold.		I
2	Principles of discretization- impulse invariance, finite difference	06	CO2
	approximation of derivatives, rectangular rules for integration, Bilinear		
	transformation, Mapping between s-plane and z-plane, Discrete PID controller.		
3	Representation of digital control system	06	CO3
	Linear difference equations, pulse transfer function, input output model,		
	examples of first order continuous and discrete time systems, Signal flow		
	graph applied to digital control systems.		
4	Stability of digital control system in z-domain and Time domain analysis	08	CO4
	Jury's method, R.H. criteria, Comparison of time response of continuous data		
	and digital control system, steady state analysis of digital control system,		

	Effect of sampling period on transient response characteristics.		
5	State space analysis Discrete time state equations in standard canonical forms, similarity transformation, state transition matrix, solution of discrete time state equation, Discretization of continuous state space model & its solution.	08	CO5
6	Pole placement and observer designsConcept of reachability, Controllability, Constructability & Observability,Design of controller via Pole placement method, dead beat controller design,concept of duality, state observer design.	10	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. M. Gopal, "Digital Contol and State Variable Methods", Tata McGraw Hill, 2nd Edition, March 2003.
- 2. K. Ogata, "Discrete Time Control Systems", Pearson Education Inc., 1995.
- 3. B.C. Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

- 1. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 2. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 3. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.
- 4. Eronini Umez, "System Dynamics and Control", Thomson Learning, 1999.
- 5. Franklin Powel, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 6. Digital Control Systems vol. I & II Isermann, Narosa publications

Subject	Subject Name	Teaching	Teaching Scheme		Credits Assigned				
Code									
ISDLO7033	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Microcontroller	4	-	-	4	-	-	4	
	Systems								

Subject	Subject Name	Examin	Examination scheme								
Code		Theory	Marks(1	100)		Term	Pract.	Oral	Total		
		Interna	1		End	work	and				
		Assessment(20)			Sem		Oral				
		Test1	Test2	Avg.	Exam						
ISDLO7033	Advanced	20	20	20	80	-	-	-	100		
	Microcontroller										
	Systems										

Subject Code	Subject Name	credits
ISDLO7033	Advanced Microcontroller Systems	4
Course objectives	 To explain the fundamentals of PIC 18F Microcontroller a of the system. To discuss and explain the integrated hardware of th Microcontroller To illustrate various programming tools and development using assembly and higher level language. To examine and design, interfacing of PIC 18F Microcon different peripheral devices such as LCD, keyboard, ADC, To design applications using learned concepts of hardwar and interfacing. To describe the working of RTOS and related tasks 	e PIC 18F of software ntroller with DAC etc.
Course Outcomes	The students will be able to:	
	 Describe working of PIC 18F Microcontroller Archite Programming model. Discuss programming tools and construct software pe assembly or 'C' language. Illustrate the knowledge of operation of integrated components such as (CCP) module, ECCP module Synchronous Serial Port (MSSP) Module, Enhanced Synchronous, Asynchronous Receiver Transmitter Analog-To-Digital Converter (A/D) Module. Investigate and construct circuits for interfacing of components with PIC 18F Microcontroller. Design and develop sophisticated application based of Microcontroller such as Temperature controller, PID cont etc. Describe the principle of working of RTOS and related tasl 	rograms in hardware le. Master Universal (EUSART), peripheral n PIC 18F roller, RTC

Prerequisite: Knowledge of digital electronics, microcontrollers, programming skills

Module	Contents	Hrs	CO Mapping
1	Introduction to PIC 18F Microcontroller PIC 18F Microcontroller architecture, Hardware PIC 18F Microcontroller family, PIC18F architecture, features PIC18F4520,		
	Block diagram, Oscillator configuration, power saving modes. Memory model, EEPROM and RAM, Program Memory. Hardware multiplier, Interrupt structure.	06	CO1
2	PIC 18F Software PIC18F addressing modes, Instruction set, Instruction format, Integrated Development Environment (IDE), Assembling, Debugging, and Executing a program using MPLAB IDE in assembly and embedded C. Data copy operation, Arithmetic operation, Branch and Skip operation, Logic operations, bit Operation, Stack and Subroutine, Code conversion programs and Software Design, Programming practice using assembly & C compiler.	10	CO2
3	Integrated peripherals of PIC 18F Microcontroller I/O ports, Timer, capture/compare/PWM (CCP) module, ECCP module. Master Synchronous Serial Port (MSSP) Module, Enhanced Universal Synchronous, Asynchronous Receiver Transmitter (EUSART), Analog- To-Digital Converter (A/D) Module, Comparator module.	08	CO3
4	PIC 18F Interfacing Interfacing to LCD, 7 segment display, Keyboard, ADC, DAC, relay, DC motor, Stepper Motor.	08	CO4
5	Case Studies	08	CO5
	PWM Generation, Digital encoder, PID Controller, Temperature controller, RTC, Speed Control of DC motors and similar system design		
6	Introduction to Real Time Operating System	08	CO6
	Introduction to RTOS concept. Tasks and task states, task and data, Semaphores and shared data.		
	Multitasking operating systems, Context switching, task tables, and kernels, Task swapping methods (Time slice, Pre-emption, Co-operative multitasking)		
	Scheduler algorithms (Rate monotonic, Deadline monotonic scheduling) Priority inversion, Tasks, threads and processes, Exceptions, Example of any tiny RTOS.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Mazidi M.A., PIC 18F Microcontroller & Embedded systems, Pearson Education Second edition.
- 2. Ramesh Gaonkar, Fundamentals of Microcontrollers and application in Embedded system (With PIC 18 Microcontroller family) Penram International Publishing.
- Steve Heath, Embedded Systems Design, Newnes publication, Second edition, ISBN 0 7506 5546

- 1. John B. Peatman, Design with PIC Microcontroller, Pearson Education
- 2. Han-way Huang, PIC Microcontroller: An Introduction to Software & Hardware Interfacing, Thomson Delmar Learning, India Edition.
- 3. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-1.
- 4. Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition.
- 5. Rajkamal, Embedded Systems, TMH, Second Edition.

Subject code	Subject Name	Teaching	Scheme (I	Hrs)	Credits Assigned			
ISDLO	Machatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
7034	Mechatronics	4	-	-	4	-	-	4

	Subject Name	Examination Scheme									
Subject		Г	Theory(ou	ıt of 100))		Pract. And Oral				
code			al Assess out of 20)	ment	End Sem.	Theory		Oral	Total		
		Test 1Test 2Avg.Exam		Orai							
ISDLO 7034	Mechatronics	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISDLO7034	Mechatronics	4
Course Objectives	 To present architecture of the me To study on broad spectrum the and electrical actuators and t systems. Development of process plan mechatronic systems. 	characteristics of the mechanical heir selection for mechatronic
Course Outcomes	 The students will be able to Describe mechatronics system. Apply the concept of system mod Identify the suitable sensor and a system. Explain feedback and intelligent Learn mechatronics system valid Integrate the components in mechatronics in mechatronics 	ctuator for a mechatronic controllers ation

Prerequisites: Signal conditioning, controllers and signals and systems, communication protocols.

Module	Contents	Hrs.	CO Mapping
	Introduction to mechatronics systems:		CO1
	Definition and evolution levels of mechatronics, integrated design		
1	issues in mechatronics, key elements of mechatronics, mechatronics	06	
	design process- modeling and simulation, prototyping, deployment /life		
	cycle, advanced approaches in mechatronics.		
	Modeling and Simulation of physical systems:		CO2
	Simulation and block diagrams, Analogies and impedance diagrams,	10	
	electrical system-bridge circuit system, transformer, mechanical		

	translational and rotational systems-sliding block with friction, elevator cable system, mass-damper system, automobile suspension system, mechanical lever system, geared elevator system, electromechanical coupling- DC motor, fluid systems-three tank liquid system, hydraulic actuator and hydraulic pressure regulator.		
3	 Hardware components: Sensors: motion and position measurement, force, torque and tactile sensors, ultrasonic and range sensors, fiber optic sensors, micro sensors. Actuators: Pneumatic and hydraulic-directional and pressure control valves, cylinders, servo proportional control valves, rotary actuators, Electrical actuation: A.C and DC motors, stepper motors, mechanical switches and solid state switches. Mechanical Actuation: types of motion, kinematic chain, cams, gears, ratchets and pawl, belt and chain drives, bearings, mechanical aspects of motor selection, piezoelectric actuators, magnetostrictive actuators, memory metal actuators, Programmable Logic Controller 	10	CO3
4	Intelligent control: Automatic control methods, Artificial Neural Network(ANN) – Modeling, basic model of neuron, characteristics of ANN, perceptron, learning algorithms, fuzzy logic – propositional logic, membership function, fuzzy logic and fuzzy rule generation, defuzzification, time dependent and temporal fuzzy logic.	10	CO4
5	Components based modular design and system validation: Components based modular design view, system validation, validation methodology- integrated and design dependence, distributed local level, validation schemes, fusion technique	06	CO5
6	Integration: Advanced actuators, consumer mechatronic products, hydraulic fingers, surgical equipment, industrial robot, autonomous guided vehicle, drilling machine, 3D Plotter, Motion Control Systems-Printing machines, coil winding machines, machine tools, and robotics, IC, and PCB manufacturing.	06	CO6

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 question need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

- 1. Devdas Shetty and Richard Kolk, "Mechatronics System Design", Thomson Learning, 2nd reprint, 2001.
- 2. W. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Ltd, 4th edition, 2010.
- 3. Nitaigour Mahalik, "Mechatronics- Principles, Concepts and Applications", Tata McGraw Hill.
- 4. Stamatios V.Kartalopoulos,"Understanding Neural Networks and fuzzy Logic", PHI,3rd reprint, 2013.
- 5. Zhijun Li, Shuzhi Sam Ge, "Fundamentals in Modeling and Control of Mobile Manipulators", March 30, 2017, by CRC Press.
- 6. Sergey Edward Lyshevski, "Mechatronics and Control of Electromechanical Systems", May 30, 2017, by CRC Press.
- 7. Bodgan Wilamowski, J. David Irwin, "Control and Mechatronics", October 12, 2017, by CRC Press.
- 8. Takashi Yamaguchi, Mitsuo Hirata, Justin Chee Khiang Pang, "High-Speed Precision Motion Control", March 29, 2017, by CRC Press.
- 9. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, "Mechatronics and the Design of Intelligent Machines and Systems", November 17, 2000, by CRC Press.
- 10. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, "Mechatronics: Fundamentals and Applications", November 17, 2015, by CRC Press.
- 11. Clarence W. de Silva, "Mechatronics: A Foundation Course", June 4, 2010 by CRC Press.
- 12. GENERAL CATALOGUE 2011 Motion & Drives, OMRON.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISDLO	Building	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
7035	Automation	4	_	-	4	-	-	4

Subject	Subject		Examination scheme						
Code	Name	Theory Marks(10			0)	Term	Pract.	Oral	Total
		Internal Assessment(20)			End	work	and		
		Test1	Test2	Avg.	Sem		Oral		
					Exam				
ISDLO	Building	20	20	20	80	-	-	-	100
7035	Automation								

Subject Code	Subject Name	credits					
ISDLO7035	Building Automation	4					
Course objectives	automation.2. To train them with architecture and operation of BAS.3. To facilitate them for designing automation system for in building.	U					
	4. Develop technique for preparation of various documents for design requirement of safety building.	required					
	The students will be able to:						
	1. Explain the concept of intelligent building and BAS.						
Course Outcomes	2. Select the hardware and design of HVAC in building automation system.						
	3. Discuss the concept of energy management system.						
	4. Design and implement the safety system for building.						
	5. Design security and video management system for buildi	ing.					
	6. Design and integrate the different system in BAS.						

Prerequisite: Fundamental of measurement and control, industrial automation, smart buildings.

Module	Contents	Hrs	CO Mapping
1	 Introduction to intelligent buildings: Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings. Introduction to Building Automation System: Features, Characteristics, Drawbacks of Building Automation system. Various Systems of Building Automation – Building Management System, Energy Management System, Security System, Safety System, Video Management System. 	06	CO1

2	HVAC system: Introduction, HVAC, Sensors & Transducers – Temperature, Pressure, Level, Flow, RH. Meaning of Analog & Digital Signals, Valves and Actuators, Valve & Actuator Selection, Various Controllers, Concept of Controller IOs, Std Signals, Signal Compatibility between Controller & Field Devices. AHU – Concept, Components, Working Principle. AC Plant Room – Concept, Components, Refrigeration Cycle Working Principle, Chiller Sequencing, AC Plant Sequencing. Feedback Control Loops, Heat – Types, Heat Transfer Principles, Measurement of Heat Transfer. Psychrometry –Concept, ASHRAE Psychrometric Chart, Meaning of Various Terms – DBT, WBT, ST, RH, DPT, Sensible & Latent Cooling & Heating, Numericals. Job IO Summary Calculation, Controller Sizing, AI to DI Conversion, Cable Selection, Earthing – Meaning, Importance, Panel Earthing, EMI & Tackling EMI. Logic Examples, CL Programming.	12	CO2
3	Energy Management System: Concept, Energy Meters, Types, Meter Networking, Monitoring Energy Parameters, Analysis of Power Quality – Instantaneous Power, Active Power, Reactive Power, Power Factor, Voltage, Current. Effect of Power Quality on Energy Consumption, Energy Reports, Energy Conservation, Importance of Energy Saving.	06	CO3
4	Safety Systems: Introduction, Fire –Meaning, Fire Development Stages, Fire Sensors & Detectors, Detector Placement, Detectors Required For Various Applications. Fire Extinguishing Principles, Fire Extinguishers & Its Classification. Fire Alarm System – Controllers, Components, Features, Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops, Working Principle, System Description, Pre-alarm, Alarm, Trouble, Fault, Differences, Cable Selection, Installation Guidelines Best Installation Practices, Logic Example. NFPA and IS2189 Stds, System Programming.	08	CO4
5	 Security Systems: Introduction, Access Control – Concept, Generic Model, Components, Types, Features, Card Technologies, Protocols, Controllers, Concept of Antipassback, Biometrics, Issues With Biometrics, Cabling, Video Door phone, Intrusion Detection System – Sensors, Working Principle, Access Control System Programming. Video Management: Introduction, CCTV Cameras, CCD Camera Basics, Traditional 	10	CO5

	CCTV System, Video Recording, Drawbacks, Digital Video Recording, Features, Functionalities, Digital Vs Analog Recording, Digital Video Management System – Introduction, Features, Advancements & Differences from Earlier Video Techniques, TCP/IP Networking Fundamentals, System Network Load Calculations, Network Design.	
6	Integrated Systems: Introduction, Integration of Building Management System, Energy Management System, Safety System, Security Systems & Video Management, Benefits of Integrated Systems, Challenges, Future Prospects of Integrated Systems.	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Shengwei Wang, Intelligent Buildings and Building Automation, 2009.
- 2. Reinhold A. Carlson Robert A. Di Giandomenico, 'Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building',1st edition (R.S. Means Company Ltd), (1991).

- 1. Roger W. Haines, "HVAC system Design Handbook", fifth edition.
- 2. National Joint Apprenticeship & Training Committee, Building Automation System Integration With Open Protocols: System Integration With Open Protocols
- 3. John I. Levenhagen and Donald H. Spethmann, HVAC Controls and Systems (Mechanical Engineering), 1992.
- 4. James E.Brumbaugh, "HVAC fundamentals", vol: 1 to 3.

University of Mumbai									
Course Code	Course Name		g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7011	Product Lifecycle Management (abbreviated as PLM)	3	-	3	-	3			

		Examination Scheme							
Course	Course Name								
code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Avg.	Sem.	Duration	Work	Totai	
		1050 1	1 est 2	Avg.	Exam	(Hrs.)			
ILO7011	Product Lifecycle Management	20	20	20	80	03	-	100	

Course	 To familiarize the students with the need, benefits and components of PLM To acquaint students with Product Data Management & PLM strategies
Objectives	 To give insights into new product development program and guidelines for designing and developing a product To familiarize the students with Virtual Product Development
	To familiarize the students with Virtual Product Development
	Student will be able to
	• Gain knowledge about phases of PLM, PLM strategies and
	methodology for PLM feasibility study and PDM implementation.
Course	• Illustrate various approaches and techniques for designing and
Outcomes	developing products.
Outcomes	• Apply product engineering guidelines / thumb rules in designing
	products for moulding, machining, sheet metal working etc.
	• Acquire knowledge in applying virtual product development tools for
	components, machining and manufacturing plan

Module	Contents	Hours						
1	Introduction to Product Lifecycle Management (PLM):Product	12						
	Lifecycle Management (PLM), Need for PLM, Product Lifecycle							
	Phases, Opportunities of Globalization, Pre-PLM Environment, PLM							
	Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM,							
	Focus and Application, A PLM Project, Starting the PLM Initiative,							
	PLM Applications							
	PLM Strategies: Industrial strategies, Strategy elements, its							
	identification, selection and implementation, Developing PLM Vision							
	and PLM Strategy, Change management for PLM							
2	Product Design: Product Design and Development Process, Engineering	09						
	Design, Organization and Decomposition in Product Design, Typologies							
	of Design Process Models, Reference Model, Product Design in the							
	Context of the Product Development Process, Relation with the							
	Development Process Planning Phase, Relation with the Post design							
	Planning Phase, Methodological Evolution in Product Design,							
	Concurrent Engineering, Characteristic Features of Concurrent							

	Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	
3	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	06
4	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	06
5	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	06
6	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	06

Books Recommended:

Reference Books:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name		g Scheme t Hours)	Credits Assigned			
		Theory	Tutorial	Theory	Tutorial	Total	
ILO7012	Reliability Engineering (abbreviated as RE)	3	-	3	-	3	

	Course Name	Examination Scheme						
Course code		Theory						
		Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
ILO7012	Reliability Engineering	20	20	20	80	03	-	100

Course Objectives	 To familiarize the students with various aspects of probability theory To acquaint the students with reliability and its concepts To introduce the students to methods of estimating the system reliability of simple and complex systems To understand the various aspects of Maintainability, Availability and FMEA procedure
Course Outcomes	 Student will be able to Understand and apply the concept of Probability to engineering problems Apply various reliability concepts to calculate different reliability parameters Estimate the system reliability of simple and complex systems Carry out a Failure Mode Effect and Criticality Analysis

Module	Contents	Hours				
1	Probability theory: Probability: Standard definitions and concepts;	10				
	Conditional Probability, Baye's Theorem.					
	Probability Distributions: Central tendency and Dispersion; Binomial,					
	Normal, Poisson, Weibull, Exponential, relations between them and					
	their significance.					
	Measures of Dispersion: Mean, Median, Mode, Range, Mean					
	Deviation, Standard Deviation, Variance, Skewness and Kurtosis.					
2	Reliability Concepts: Reliability definitions, Importance of Reliability,	10				
	Quality Assurance and Reliability, Bath Tub Curve.					
	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean					
	Time To Failure (MTTF), MTBF, Reliability Functions.					
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing,					
	Time Dependent Failure Rate, Weibull Model. Distribution functions					
	and reliability analysis.					
3	System Reliability	05				
	System Configurations: Series, parallel, mixed configuration, k out of n					
	structure, Complex systems.					
4	Reliability Improvement	10				
	Redundancy Techniques: Element redundancy, Unit redundancy,					

	Standby redundancies. Markov analysis.					
	System Reliability Analysis - Enumeration method, Cut-set method,					
	Success					
	Path method, Decomposition method.					
5	Maintainability and Availability	05				
	System downtime, Design for Maintainability: Maintenance					
	requirements, Design methods: Fault Isolation and self-diagnostics,					
	Parts standardization and Interchangeability, Modularization and					
	Accessibility, Repair Vs Replacement.					
	Availability – qualitative aspects.					
6	Failure Mode, Effects and Criticality Analysis: Failure mode effects	05				
	analysis, severity/criticality analysis, FMECA examples. Fault tree					
	construction, basic symbols, development of functional reliability block					
	diagram, Fau1t tree analysis and Event tree Analysis					

Books Recommended:

Reference Books:

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course Code	Course Name		g Scheme t Hours)	Credits Assigned			
Coue		Theory	Tutorial	Theory	Tutorial	Total	
ILO7013	Management Information System (abbreviated as MIS)	3	-	3	-	3	

		Examination Scheme						
Course code				Theor	у			
	Course Name	Interna	Internal Assessment			Exam	Term	Total
		Test 1	Test 2	Avg.	Sem.	Duration	Work	1 Otal
					Exam	(Hrs.)		
ILO7013	Management Information System	20	20	20	80	03	-	100

	 The course is blend of Management and Technical field. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
Course Objectives	 Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage Identify the basic steps in systems development
	 Identify the basic steps in systems development Define and analyze various MIS management responsibilities, including planning, budgeting, project management, and personnel management Discuss critical ethical and social issues in information systems
Course Outcomes	 Student will be able to Explain how information systems Transform Business Identify the impact information systems have on an organization Describe IT infrastructure and its components and its current trends Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Contents	Hours
1	Introduction To Information Systems (IS): Computer Based Information	7
	Systems, Impact of IT on organizations, Importance of IS to Society.	
	Organizational Strategy, Competitive Advantages and IS.	
2	Data and Knowledge Management: Database Approach, Big Data, Data	9
	warehouse and Data Marts, Knowledge Management.	
	Business intelligence (BI): Managers and Decision Making, BI for Data	
	analysis and Presenting Results	

3	Ethical issues and Privacy: Information Security. Threat to IS, and	6
	Security Controls	
4	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,	7
	Marketing, Operational and Analytic CRM, E-business and E-	
	commerce – B2B B2C. Mobile commerce.	
5	Computer Networks Wired and Wireless technology, Pervasive	6
	computing, Cloud computing model.	
6	Information System within Organization: Transaction Processing	10
	Systems, Functional Area Information System, ERP and ERP support of	
	Business Process.	
	Acquiring Information Systems and Applications: Various System	
	development life cycle models.	

Reference Books:

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course Code	Course Name		g Scheme t Hours)	Credits Assigned		
		Theory	Tutorial	Theory	Tutorial	Total
ILO7014	Design of Experiments (abbreviated as DoE)	3	-	3	-	3

		Examination Scheme						
Course code								
	Course Name	Internal Assessment			End	Exam	Term	Total
coue		Test 1	Test 2	Aug	Sem.	Duration	Work	Total
		Test I	Test Z	Avg.	Exam	(Hrs.)		
ILO7014	Design of Experiments	20	20	20	80	03	-	100

	1. To understand the issues and principles of Design of Experiments
Course	(DOE).
Objectives	2. To list the guidelines for designing experiments.
Objectives	3. To become familiar with methodologies that can be used in conjunction
	with experimental designs for robustness and optimization
	Student will be able to
Course	• Plan data collection, to turn data into information and to make decisions
Course Outcomes	that lead to appropriate action.
Outcomes	• Apply the methods taught to real life situations.
	• Plan, analyze, and interpret the results of experiments

Module	Contents	Hours
1	Introduction: Strategy of Experimentation, Typical Applications of	6
	Experimental Design, Guidelines for Designing Experiments, Response	
	Surface Methodology.	
2	Fitting Regression Models: Linear Regression Models, Estimation of	8
	the Parameters in Linear Regression Models, Hypothesis Testing in	
	Multiple Regression, Confidence Intervals in Multiple Regression,	
	Prediction of new response observation, Regression model diagnostics,	
	Testing for lack of fit.	
3	Two-Level Factorial Designs: The 2^2 Design, The 2^3 Design, The	7
	General 2^k Design, A Single Replicate of the 2^k Design, The Addition of	
	Center Points to the 2 ^k Design, Blocking in the 2 ^k Factorial Design, Split-	
	Plot Designs.	
4	Two-Level Fractional Factorial Designs: The One-Half Fraction of the	7
	2^k Design, The One-Quarter Fraction of the 2^k Design, The General 2^{k-p}	
	Fractional Factorial Design, Resolution III Designs, Resolution IV and V	
	Designs, Fractional Factorial Split-Plot Designs.	
5	Conducting Tests: Testing Logistics, Statistical aspects of conducting	7
	tests, Characteristics of good and bad data sets, Example experiments,	
	Attribute Vs Variable data sets.	
6	Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,	4
	Analysis Methods, Robust design examples.	

Reference Books:

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai							
Course	Course Name		g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
ILO7015	Operation Research (abbreviated as OR)	3	-	3	-	3	

Course		Examination Scheme						
			Theory					
code	Course Name	Internal Assessment			End	Exam	Term	Total
code		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total
					Exam	(Hrs.)		
ILO7015	Operation Research	20	20	20	80	03	-	100

Course Objectives	 Formulate a real-world problem as a mathematical programming model. Understand the mathematical tools that are needed to solve optimization problems. Use mathematical software to solve the proposed models.
Course Outcomes	 Student will be able to Understand the theoretical workings of the simplex method for linear programming and perform iterations of it by hand. Understand the relationship between a linear program and its dual, including strong duality and complementary slackness. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change. Solve specialized linear programming problems like the transportation and assignment problems. Solve network models like the shortest path, minimum spanning tree, and maximum flow problems. Understand the applications of, basic methods for, and challenges in integer programming Model a dynamic system as a queuing model and compute important performance measures

Module	Contents	Hours				
1	Introduction to Operations Research: Introduction, Historical	2				
	Background, Scope of Operations Research , Features of Operations					
	Research, Phases of Operations Research, Types of Operations Research					
	Models, Operations Research Methodology, Operations Research					
	Techniques and Tools , Structure of the Mathematical Model,					
	Limitations of Operations Research					
2	Linear Programming: Introduction, Linear Programming Problem,	6				
	Requirements of LPP, Mathematical Formulation of LPP, Graphical					
	method, Simplex Method Penalty Cost Method or Big M-method, Two					
	Phase Method, Revised simplex method, Duality, Primal - Dual					
	construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,					
	Complimentary Slackness Theorem, Main Duality Theorem, Dual					
	Simplex Method, Sensitivity Analysis					
3	Transportation Problem: Formulation, solution, unbalanced	6				

	Transportation problem. Finding basic feasible solutions – Northwest	
	corner rule, least cost method and Vogel's approximation method.	
	Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the	
	Problem, Hungarian Method Algorithm, Processing of n Jobs Through	
	Two Machines and m Machines, Graphical Method of Two Jobs m	
	Machines Problem Routing Problem, Travelling Salesman Problem	
4	Integer Programming Problem: Introduction, Types of Integer	6
	Programming Problems, Gomory's cutting plane Algorithm, Branch and	
	Bound Technique. Introduction to Decomposition algorithms.	
5	Queuing models: queuing systems and structures, single server and	6
	multi-server models, Poisson input, exponential service, constant rate	
	service, finite and infinite population	
6	Simulation: Introduction, Methodology of Simulation, Basic Concepts,	4
	Simulation Procedure, Application of Simulation Monte-Carlo	
	Method: Introduction, Monte-Carlo Simulation, Applications of	
	Simulation, Advantages of Simulation, Limitations of Simulation	
7	Dynamic programming. Characteristics of dynamic programming.	4
	Dynamic programming approach for Priority Management employment	
	smoothening, capital budgeting, Stage Coach/Shortest Path, cargo	
	loading and Reliability problems.	
8	Games Theory. Competitive games, rectangular game, saddle point,	4
	minimax (maximin) method of optimal strategies, value of the game.	
	Solution of games with saddle points, dominance principle. Rectangular	
	games without saddle point – mixed strategy for 2 X 2 games.	
9	Inventory Models: Classical EOQ Models, EOQ Model with Price	4
-	Breaks, EOQ with Shortage, Probabilistic EOQ Model,	

Reference Books:

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name		g Scheme t Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
ILO7016	Cyber Security and Laws (abbreviated as CSL)	3	-	3	-	3		

		Examination Scheme							
Course				Theor	у				
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total	
		Iest I	Test 2	Avg.	Exam	(Hrs.)			
ILO7016	Cyber Security and Laws	20	20	20	80	03	-	100	

Course	• To understand and identify different types cyber crime and cyber law						
Objectives	• To recognized Indian IT Act 2008 and its latest amendments						
Objectives	 To learn various types of security standards compliances 						
	Student will be able to						
	• Understand the concept of cyber crime and its effect on outside world						
Course	• Interpret and apply IT law in various legal issues						
Outcomes	• Distinguish different aspects of cyber law						
	• Apply Information Security Standards compliance during software						
	design and development						

Module	Contents	Hours
1	Introduction to Cybercrime: Cybercrime definition and origins of the	4
	world, Cybercrime and information security, Classifications of	
	cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective	
	on cybercrimes.	
2	Cyber offenses & Cybercrime: How criminal plan the attacks, Social	10
	Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack	
	vector, Cloud computing, Proliferation of Mobile and Wireless Devices,	
	Trends in Mobility, Credit Card Frauds in Mobile and Wireless	
	Computing Era, Security Challenges Posed by Mobile Devices, Registry	
	Settings for Mobile Devices, Authentication Service Security, Attacks	
	on Mobile/Cell Phones, Mobile Devices: Security Implications for	
	Organizations, Organizational Measures for Handling Mobile, Devices-	
	Related Security Issues, Organizational Security Policies and Measures	
	in Mobile Computing Era, Laptops	
3	Tools and Methods Used in Cyberline: Phishing, Password Cracking,	6
	Keyloggers and Spywares, Virus and Worms, Steganography, DoS and	
	DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless	
	Networks, Phishing, Identity Theft (ID Theft)	
4	The Concept of Cyberspace: E-Commerce, The Contract Aspects in	8
	Cyber Law ,The Security Aspect of Cyber Law ,The Intellectual	
	Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law	
	, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law,	
	Legal Framework for Electronic Data Interchange Law Relating to	

	Electronic Banking, The Need for an Indian Cyber Law						
5	Indian IT Act.: Cyber Crime and Criminal Justice : Penalties,						
	Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its						
	Amendments						
6	Information Security Standard compliances	6					
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.						

Reference Books:

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name		g Scheme t Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
ILO7017	Disaster Management and Mitigation Measures (abbreviated as DMMM)	3	-	3	-	3		

G		Examination Scheme							
Course code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total	
		Test I	I est 2	Avg.	Exam	(Hrs.)			
	Disaster								
ILO7017	Management and	20	20	20	80	03	_	100	
	Mitigation	20		20	00	0 03 -		100	
	Measures								

	• To understand the various types of disaster occurring around the world
	• To identify extent and damaging capacity of a disaster
	• To study and understand the means of losses and methods to overcome /minimize it.
Course Objectives	• To understand role of individual and various organization during and after disaster
Objectives	• To know warning systems, their implementation and based on this to initiate training to a laymen
	• To understand application of GIS in the field of disaster management
	• To understand the emergency government response structures before,
	during and after disaster
	Student will be able to
	• Understand natural as well as manmade disaster and their extent and possible effects on the economy.
Course	• Planning of national importance structures based upon the previous
Course	history.
Outcomes	• Understand government policies, acts and various organizational
	structure associated with an emergency.
	• Know the simple do's and don'ts in such extreme events and act
	accordingly

Module	Contents	Hours
1	Introduction: Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters.	03
	Introduction to global warming and climate change.	
2	Natural Disaster and Manmade disasters: Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion. Manmade Disasters:	06

	Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters.	
3	Disaster Management, Policy and Administration: Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	06
4	Institutional Framework for Disaster Management in India: Importance of public awareness, Preparation and execution of emergency management programme. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	06
5	 Financing Relief Measures: Ways to raise finance for relief expenditure, Role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. International relief aid agencies and their role in extreme events. 	09
6	Preventive and Mitigation Measures: Pre-disaster, during disaster and post-disaster measures in some events in general, Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication. Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. Do's and don'ts in case of disasters and effective implementation of relief aids.	06

Reference Books:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng – Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name		g Scheme t Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7018	Energy Audit and Management (abbreviated as EAM)	3	-	3	-	3			

	Course Name	Examination Scheme							
Course									
Course code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai	
		Test I	I ESt Z	Avg.	Exam	(Hrs.)			
ILO7018	Energy Audit and Management	20	20	20	80	03	-	100	

Course Objectives	 To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
	• To relate the data collected during performance evaluation of systems for identification of energy saving opportunities
	Student will be able to
	• To identify and describe present state of energy security and its importance.
Course	• To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
Outcomes	• To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
	• To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
	• To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Contents	Hours
1	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy	4
	Sector Reforms, Energy Security, Energy Conservation and its	
	Importance, Energy Conservation Act-2001 and its Features. Basics of	
	Energy and its various forms, Material and Energy balance	
2	Energy Audit Principles: Definition, Energy audit- need, Types of	8
	energy audit, Energy management (audit) approach-understanding	
	energy costs, Bench marking, Energy performance, Matching energy use	
	to requirement, Maximizing system efficiencies, Optimizing the input	
	energy requirements, Fuel and energy substitution. Elements of	
	monitoring& targeting; Energy audit Instruments; Data and information-	
	analysis. Financial analysis techniques: Simple payback period, NPV,	
	Return on investment (ROI), Internal rate of return (IRR)	

3	 Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives. 	10
4	 Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities 	10
5	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	4
6	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	3

Reference Books:

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name		g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO7019	Development Engineering (abbreviated as DE)	3	-	3	-	3			

	Course Name	Examination Scheme							
Course									
Course code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai	
		1651 1	Test 2	Avg.	Exam	(Hrs.)			
ILO7019	Development	20	20	20	80	03		100	
IL07019	Engineering	20	20	20	80	05	-	100	

	• To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural
	• To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
Course Objectives	• An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
	• To understand the Nature and Type of Human Values relevant to Planning Institutions
	Student will be able to
	• Apply knowledge for Rural Development
Course	• Apply knowledge for Management Issues.
Course Outcomes	• Apply knowledge for Initiatives and Strategies.
Outcomes	• Develop acumen for higher education and research.
	• Master the art of working in group of different nature.
	• Develop confidence to take up rural project activities independently.

Module	Contents	Hours
1	Introduction to Rural Development Meaning, nature and scope of	08
	development; Nature of rural society in India; Hierarchy of settlements;	
	Social, economic and ecological constraints for rural development.	
	Roots of Rural Development in India Rural reconstruction and	
	Sarvodaya programme before independence; Impact of voluntary effort	
	and Sarvodaya Movement on rural development; Constitutional	
	direction, directive principles; Panchayati Raj - beginning of planning	
	and community development; National extension services.	
2	Post-Independence rural Development Balwant Rai Mehta Committee -	04
	three tier system of rural local. Government; Need and scope for	
	people's participation and Panchayati Raj; Ashok Mehta Committee -	
	linkage between Panchayati Raj, participation and rural development.	
3	Rural Development Initiatives in Five Year Plans Five Year Plans and	06
	Rural Development; Planning process at National, State, Regional and	
	District levels; Planning, development, implementing and monitoring	

	organizations and agencies; Urban and rural interface - integrated	
	approach and local plans; Development initiatives and their	
	convergence; Special component plan and sub-plan for the weaker	
	section; Micro-eco zones; Data base for local planning; Need for	
	decentralized planning; Sustainable rural development.	
4	Post 73rd Amendment Scenario 73rd Constitution Amendment Act,	04
	including - XI schedule, devolution of powers, functions and finance;	
	Panchayati Raj institutions - organizational linkages; Recent changes in	
	rural local planning; Gram Sabha - revitalized Panchayati Raj;	
	Institutionalization; resource mapping, resource mobilization including	
	social mobilization; Information Technology and rural planning; Need	
	for further amendments.	
5	Values and Science and Technology Material development and its	10
	values; the challenge of science and technology; Values in planning	
	profession, research and education. Types of Values Psychological	
	values — integrated personality; mental health; Societal values — the	
	modern search for a good society; justice, democracy, rule of law, values	
	in the Indian constitution; Aesthetic values — perception and enjoyment	
	of beauty; Moral and ethical values; nature of moral judgment; Spiritual	
	values; different concepts; secular spirituality; Relative and absolute	
	values; Human values— humanism and human values; human rights;	
	human values as freedom, creativity, love and wisdom.	
6	Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of	04
	responsibility; Work ethics; Professional ethics; Ethics in planning	
	profession, research and education	

Reference Books:

1. ITPI, Village Planning and Rural Development, ITPI, New Delhi

- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi

4. Planning Commission, Five Year Plans, Planning Commission

5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi

6. Planning Guide to Beginners

- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.

10. Watson, V. , Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 - 407

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISL701	Industrial Process Control-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Examination scheme									
		Internal Assessment			End Sem	Term work	Pract. and	Oral	Total		
		Test 1	Test 2	Avg.	Exam	WOIK	Oral				
ISL701	Industrial Process Control –Lab Practice	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	credits					
ISL701	Industrial Process Control-Lab Practice						
Course objectives	 To impart the knowledge of different industrial unit operations. To make them capable to design and develop instrumentation 						
	 and control scheme for industrial processes. 3. To give them exposure to work in process industry. 4. To explain students about hazardous area and safety system. 	design					
Course Outcomes	The students will be able to						
	1. Explain working and control of various heat tran operations	sfer unit					
	2. Explain working and control of various heat and mass unit operations	s transfer					
	 3. Explain the miscellaneous process equipment and their c 4. Describe the processes of various continuous industries and instrumentation involved in them. 						
	5. Describe the processes of various batch process industinstrumentation involved in them.6. Classify hazardous areas in the industry.	stries and					

Syllabus: Same as that of Subject ISC701 Industrial Process Control.

List of Laboratory Experiments/Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Demonstrate the operation and control scheme of Heat exchanger	CO1
2	Learn working of various Unit Operations (Boilers/furnace / Distillation column etc.) using online learning resources.	CO2
3	Demonstrate the reactor control system.	CO2
4	Demonstrate the operation & control scheme of a compressor.	CO3
5	Prepare a report on any one industry.	CO4 and CO5
6	Develop some charts on hazardous area classification.	CO6
7	Assignment/Exercise on heat transfer unit operations- heat exchanger, boilers	CO1
8	Assignment/Exercise on heat transfer unit operations-evaporator, furnace	CO1
9	Assignment/Exercise on heat and mass transfer unit operations-Distillation, dryers	CO2
10	Assignment/Exercise on heat and mass transfer unit operations-Crystallization, reactor	CO2
11	Assignment/Exercise on miscellaneous equipment	CO3
12	Assignment/Exercise on hazardous area classification	CO6
13	Assignment/Exercise on continuous process industries	CO4
14	Assignment/Exercise on batch process industries	CO5

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

• Industry visit is advised to understand the unit operations, industrial processes and their control.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) : 10 Marks					
Laboratory work (programs / journal)	:	10 Marks			
Attendance	:	5 Marks			

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL702	Biomedical Instrumentation	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	- Lab Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Examin	ation sche	me		Term	Pract.	Oral	Total
		Internal Assessment			End Sem	_ work	And oral		
		Test1	Test2	Avg.	Exam				
ISL702	Biomedical Instrumentation- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name Biomedical Instrumentation- Lab Practice					
ISL702						
Course objective	 To make students perform experiments based on the principle and various Biomedical Instruments used for Bio-potential measureme To develop skills in the design of various biomedical instru- in diagnosis and life-support. 	nts				
Course Outcome	 Students will be able 1. To measure and identify various Bio-potentials with their specific 2. To observe and plot various Physiological parameters specifications. 3. To measure the various cardiovascular parameters by Designing circuitry. 4. To realise the circuitry of different life support instruments, like defibrillator. 5. To distinguish between the various medical imaging tec comparing, principle and concept involved in each of the techniqu 6. To describe the significance of electrical safety in biomedical mean 	with their g the related e pacemaker, chniques by ie.				

Syllabus: Same as that of Subject ISC702 Biomedical Instrumentation.

List of Suggested Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Demonstration and working of instruments like ECG and PCG.	CO1

2	Demonstration and working of instruments like EMG and EEG.	C01
3	Study of electrodes for various biomedical applications.	CO1
4	To measure Blood pressure by indirect method.	CO2
5	To study Pacemaker and various waveforms or Design and implement pacemaker circuit.	CO4
6	To study Defibrillator and voltage waveforms or Design and implementDefibrillator circuit.	CO4
7	Design of ECG amplifier and testing of gain frequency response with weak input signal.	CO3
8	To design and implement ECG signal conditioning circuits with different parameter.	CO3
9	To design and implement EMG Quantification circuit.	CO2
10	To study Hemodialysis, Heart/Lung machine based models.	CO4
11	ECG simulation on PC / Microcontroller.	CO3
12	Study of working of pulse oxymeter / Heart rate meter.	CO3
13	To study respiration rate meter / respiration parameter measurement.	CO2
14	Study on Medical Imaging Techniques	CO5
15	Study on Electrical Safety	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments) : 10 Marks Laboratory work (programs / journal) : 10 Marks Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL703	Industrial Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Lab Practice	-	02	-	-	1	-	1

	Subject Name	Examination scheme									
Sub Code		Internal Assessment Test1 Test2 Avg.			End sem exam	Term work	Pract. And oral	Oral	Total		
ISL703	Industrial Automation- Lab Practice	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	Credits
ISL703	Industrial Automation -Lab Practice	1
Course objective	 To give the students fundamentals of automation an automation systems used in industry such as PLC, DCS, and To impart the knowledge about the architecture, workin DCS and SCADA To make the students capable to apply knowledge to identif and software requirements of PLC, DCS and SCADA To give the students a comprehension of the aspects relate Instrumented system (SIS). 	d SCADA. ng of PLC, Ty hardware
Course Outcome	 The students will be able to 1. Describe automation, need, importance and applications in 2. Identify components of PLC, and develop PLC lad instructions of PLC and design PLC based application selection and sizing criteria 3. Explain evolution and architecture of DCS, hierarchical DCS, programming DCS through Function Block Diagn method. 4. Describe SCADA architecture, communication in SC develop any application based on SCADA along with SCADA software. 5. Explain database and alarm management system 6. Recognize the need of SIS and describe risk reduction method 	dder using by proper control in ram (FBD) CADA and GUI using

Syllabus: Same as that of Subject ISC703 Industrial Automation.

List of Laboratory Experiments/Assignments:

Sr. No.	Detailed Content	CO Mapping
1.	Processing of sensor signals by the PLC to drive various end effectors such as pneumatic/electric/hydraulic.	CO2
2.	PLC programs for process control applications (minimum 4 nos)	CO2
3.	DCS programming using Function block diagram method	CO3
4.	GUI development for any one application using SCADA software.	CO4
5.	Assignment/Exercise based on Automation Fundamentals	C01
6.	Assignment/Exercise based on DCS	CO3
7.	Assignment /Exercise based on SCADA	CO4
8.	Assignment/Exercise based on Database and Alarm management	CO5
9.	Assignment/Exercise based on Safety Instrumented System	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 4 experiments and 4 assignments.

The distribution of marks for term work shall be as follows:

Laboratory work	(Experiments/Assignments):	10 Marks
-----------------	----------------------------	----------

- Laboratory work (programs / journal) : 10 Marks
- Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
	Image	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL704	Processing-Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	Examination scheme							
Code						Term	Pract.	Oral	Total
		Internal Assessment			End sem Exam	work	and Oral		
		Test1	Test2	Avg.					
ISL704	Image	-	-	-	-	25	-	25	50
	Processing-Lab Practice								

Subject Code	Subject Name	credits					
ISL704	Image Processing-Lab Practice	1					
Course objectives	1. Familiarize with computer simulation software for Image pro	cessing and its					
	analysis and basic Image operations.						
	2. To Study the Fourier and Cosine transformation of images in the simulation						
	platform and display the result						
	3. Write advanced image processing algorithms such as Image enhancement,						
	Image restoration by using computer simulations.						
	4. Develop program for extract the features of images by segmentation and image						
	morphology.	C					
Course	Students will be able to -						
Outcomes	1. Simulate various operations on Images.						
	2. Perform Discrete Fourier transform and Discrete Cosine transform	n on Image.					
	3. Perform Image enhancement techniques.	C					
	4. Perform morphological operations on images and display the resu	ılt.					
	5. Implement Image compression techniques.						
	6. Implement restoration techniques on degraded images.						

Syllabus same as that of subject ISDLO7031 Image Processing

List of Laboratory Experiments:

Sr. No.	Detailed Contents	CO
		mapping
1	Basic Image operations such as Reading, Displaying, Writing, Flipping,	CO1
	Cropping Images. Introduction to M file, Basic Matrix operations.	
2	Spatial transformation of images like Translation, Rotation and Scaling.	CO1
3	Compute and visualize 2-D DFT, DCT of Images.	CO2

4	Point processing operations like Image negative, brightness adjustment, contrast stretching, Threshold, Log transformation, Power law transformations, Gray level slicing with or without background.	CO3
5	Image Enhancement techniques by arithmetic and logic operations.	CO3
6	Generate and plot Image Histogram and Histogram Equalization.	CO4
7	Image Analysis and interpret the result by using Spatial filter.	CO5
8	Image smoothing and Sharpening in frequency domain.	CO5
9	Implementing Image acquisition and degradation process by different noises and	CO5
10	Edge detection by using Robert operator, Prewitt operator, Sobel operator and compare the result.	CO6
11	Morphological operation of Images like Dilation, Erosion, Opening, Closing, Boundary Detection.	CO6
12	Image segmentation such as point, line, edge detection.	CO6

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Students can use any Computer simulation software programing platform like MATLAB/SCILAB.

Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL704	Digital Control System-Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	-	2	-	-	1	-	1

		Examination scheme								
Sub	Subject Name				End som	Term	Pract.	Oral	Total	
Code	Subject Name	Internal Assess		sment	End sem Exam	work	and Oral	Oral	Total	
		Test1	Test2	Avg.						
ISL704	Digital Control System- Lab	_	_	_	_	25	_	25	50	
151704	Practice		-	_	-	23	-	23	50	

Subject Code	Subject Name	Credits
ISL704	Digital Control System-Lab Practice	1
Course objective	1. The students should be able to determine response of ZOH and F	ЭH
	2. The students should be able to descretize continuous data system.	
	3. The students will be able to represent given system into different	canonical
	form.	
	4. The students should able to determine state transition matrix	
	5. Students can be able to design controller and observer	
Course Outcome	Students will be able to -	
	1. Understand the difference in response with reconstruction due to FOH.	ZOH and
	2. Discretize the analog systems and signals with different methods	
	3. Design controller and observer for the given system.	
	4. Demonstrate their knowledge to obtain different canonical forms a and verify using simulation software.	nalytically
	5. Determine state transition matrix using simulation software and results analytically	verify the
	6. Measure and record the experimental data, analyze the results, and formal laboratory report.	l prepare a

Syllabus same as that of subject ISDLO7032 Digital Control System

List of Laboratory Experiments:

Sr. No.	Detailed Contents	СО
SI. INU.	Detailed Contents	Mapping
1	To determine response of zero order hold and first order hold using simulation software	CO1
	Mapping from S- plane to Z-plane analytically and verification using simulation software	CO2
	Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using simulation software	CO3
4	To represent given system in different canonical forms, analytically and verification using simulation software	CO4
	To determine pulse transfer function of a given system analytically and its verification using simulation software	CO4,CO6
	Determination of state transition matrix analytically and its verification using simulation software	CO5,CO6
7	To check controllability and observability of a given system analytically and verify the result using simulation software.	CO3,CO6
8	To design the controller by any method	CO3
9	To design an observer by any method	CO3

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Student can use simulation software such as MATLAB, MATHCAD, SCILAB or any other open source software.

Oral Examination:

Oral examination will be based on entire syllabus

Term Work:

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teaching Scheme		Credits Assigned				
ISL704	Advanced Microcontroller	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Systems- Lab Practice	-	2	-	-	1	-	1

Sub	Subject Name	Examination scheme							
Code		Internal Assessment		End	Term	Pract	Oral	Total	
		Test 1	Test 2	Avg.	Sem	work	and		
					Exam		Oral		
ISL704	Advanced	-	-	-	-	25	-	25	50
	Microcontroller								
	Systems- Lab								
	Practice								

Subject Code	Subject Name	Credits				
ISL704	Advanced Microcontroller Systems- Lab Practice 1					
Course objectives	 To explain the fundamentals of PIC 18F Microcontroller and working of the system. To discuss and explain the integrated hardware of the PIC 18F Microcontroller To illustrate various programming tools and development of software using assembly and higher level language. To examine and design, interfacing of PIC 18F Microcontroller with different peripheral devices such as LCD, keyboard, ADC, DAC etc. To design applications using learned concepts of hardware, software and interfacing. To describe the working of RTOS and related tasks. 					
Course Outcomes	 The students will be able to: 1. Simulate, Analyze and develop programs using assembly lang 2. Simulate, Analyze and develop programs using embedded C 3. Develop program to use PIC18 integrated peripherals. 4. Design and Develop programs for interfacing of externation components with PIC 18F Microcontroller. 5. Design and develop sophisticated application using the F peripherals and external peripherals 6. Show the uses and features of RTOS 	ernal peripheral				

Syllabus: Same as that of Subject ISDLO7033 Advanced Microcontroller Systems.

List of Laboratory Experiments/ Assignments:

Detailed Content	CO Mapping	
To develop assembly program	CO1	
To develop embedded C program	CO2	
To develop a program for generating square wave on port pin with and without timer.	CO3	
To develop a program for interfacing 7 segments displays with PIC18	CO4	
To develop a program for interfacing LCD display with PIC18	CO4	
To develop a program for interfacing keyboard with PIC18	CO4	
To develop a program for Serial Communication with PC.	CO3	
	To develop assembly programTo develop embedded C programTo develop a program for generating square wave on port pin with and without timer.To develop a program for interfacing 7 segments displays with PIC18To develop a program for interfacing LCD display with PIC18To develop a program for interfacing keyboard with PIC18	

8.	To develop a program for interfacing DAC and its application.	CO4
9.	To develop a program for implementing RTC.	C03
10.	To develop a program for Speed control of DC Motor	CO5
11.	To develop a program for temperature measurement.	CO5
12.	To develop a program for Stepper motor control	C05
13.	To develop a program for implementing PID controller.	C05
14.	Assignment on understanding operation of integrated peripherals	CO5
15.	Case study on various types of RTOS	CO6

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments): 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Sub code	Subject Name	Teachin	g Scheme	(Hrs)	Credits Assigned				
ISL704	Mechatronics	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
		-	2	-	-	1	-	1	

		Examination Scheme							
Sub	Subject Name	Theory(out of 100)				Due of			
code		Internal Assessment (out of 20)			End Sem.	Theory	Pract. And Oral	Oral	Total
		Test 1	Test 2	Avg.	Exam		Orai		
ISL704	Mechatronics	-	-	-	-	25	-	25	50

Subject Code	Subject Name	Credits					
ISL704	Mechatronics Lab	1					
Course Objectives	 To present architecture of the mechatronics system design To study on broad spectrum the characteristics of the mechanical a electrical actuators and their selection for mechatronic systems. Development of process plan and templates for design of mechatron systems. 						
Course Outcomes	 The students will be able to 1. Apply the concept of system modelin 2. Calculate performance characteristics 3. Learn the working of actuators for a 4. Design feedback and intelligent cont 5. Describe mechatronics system valida 6. Integrate the components in mechatro 	s of sensors mechatronic system. rollers ition					

Syllabus: Same as that of Subject ISDLO7034 Mechatronics.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Modeling and simulation of basic electrical, hydraulic and pneumatic systems using any virtual instrumentation software like LabVIEW.	CO1
2	Calculate static and dynamic characteristics of position/force/tactile sensors	CO2
3	Design of circuits with logic sequence using Electro pneumatic trainer kits.	CO3
4	Simulation of basic Hydraulic, Pneumatic and Electric circuits using any software	CO3

5	Electro pneumatic applications using PLC	CO3
6	Speed Control of AC & DC drives	CO3
7	Servo controller interfacing for DC motor	CO4
8	PID controller interfacing	CO4
9	Implementation of fuzzy controller for level or temperature control	CO4
10	Stepper motor interfacing with Micro controller (i) Full step resolution (ii) half step resolution	CO4
11	Assignment on Components based modular design and system validation	CO5
12	Computerized data logging system with control for process variables like pressure, flow and temperature.	CO6
13	Case study on any one mechatronics system	CO6

Any other additional experiments / case studies based on syllabus which will help students to understand topic/concept.

**Industry visit is advised to understand the Mechatronics subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum seven experiments and 01 case study.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments/a	nts)	: 10 Marks
Laboratory work (programs / journal)		: 10 Marks
Attendance		: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work

Subject Code	Subject Name	Teaching Scheme			Credits Assigned				
ISL704	Building Automation-	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Lab Practice	-	2	-	-	1	-	1	

Sub	Subject Name		ne						
Code		Intern	al Asses	sment	End	Term	Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem Exam	work	and Oral		
ISL704	Building Automation- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	credits				
ISL704	Building Automation Lab Practice	1				
Course objectives	 To brief students with origin and evolution of bu automation. To train them with architecture and operation of BAS. To facilitate them for designing automation system for intelli building. Develop technique for preparation of various documents requ design requirement of safety building. 	gent				
Course Outcomes	 The students will be able to: Explain the concept of intelligent building and BAS. Select the hardware and design of HVAC in building automation system Discuss the concept of energy management system. Design and implement the safety system for building. Design security and video management system for building. Design and integrate the different system in BAS. 					

Syllabus: Same as that of Subject ISDLO7035 Building Automation.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Assignment on intelligent building.	CO1
2	Assignment on BAS.	CO1
3	Assignment on HVAC.	CO2
4	Assignment on Direct Digital Control of an HVAC system.	CO2

5	Assignment on BACnet and its features.	CO2
6	Assignment on lighting- control systems.	CO3
7	Assignment on fire alarm systems.	CO4
8	Assignment on access Control System.	CO5
9	Assignment on CCTV systems.	CO5
10	Assignment on building system integration.	CO6
11	Case study – Intelligent building of hospital/hotel/airport.	CO1, CO2

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

• Visit to intelligent building of hotel/hospital/airport is advised to understand the Building Automation subject.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignment	s)	: 10	Marks
Laboratory work (programs / journal)	:	10	Marks
Attendance	:	5 M	arks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISL705	Project-I	Theory Pract. Tut.		Theory	Pract.	Tut.	Total		
		-	6	-	-	3	-	3	

Sub Subject Examination scheme									
Code	Name	Theory (out of 100)TermPractOralTotal							
		Internal Assessment End			work	. and			
		Test1 Test2 Avg. sem				Oral			
					Exam				
ISL705	Project-I	-	-	-	-	50	-	50	100

Term Work:

The final year students have already under gone project assignment in their third year in Mini Project I and II. In final year, group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or externally assigned by the research institutes and industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in third year.

The main intention of project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and/or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Subject code	Subject Name	Teaching scheme			Credit assigned				
ISC801	Instrumentation Project	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Documentation and Execution	4	-	-	4	-	-	4	

			Examination scheme								
Subject Code]	Fheory (ou	t of 100)		D				
	Subject Name	Internal Assessment			End sem Exam	Term work	Pract. and Oral	Oral	Total		
		Test1	Test2	Avg.							
ISC801	Instrumentation Project Documentation and Execution	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISC801	Instrumentation Project Documentation and Execution	4
Course objective	 To provide knowledge of Instrumentation Project & Detailed Engineering t in the EPC Consultancy. To make the students capable of executing Project Deliverables and End 	1
	activities of Project Documentation.	
Course	The students will able to:	
Outcome	 Interpret types of project and execute it by knowing relationship between designer and constructor. 	customer,
	2. Use standards in instrumentation project.	
	3. Design engineering documents such as loop diagram, hook-up, JB schedule	
	4. Develop and test system integration.	
	5. Schedule and evaluate activities like procurement, commissioning, installat	ion.
	6. Support and evaluate documentation software packages used in industry.	

Prerequisite: Knowledge of standards, basics of Sensor, transducer, process loops, control valve.

Module	Content	Hrs	CO Mapping
1	The Project and Project Team: Introduction, Types of project, constraint's predictability, structure, flow and deliverables, Need and techniques used for Project Planning and Scheduling, software used for Project Planning and Scheduling The Project Team : Customer, designer and constructor	10	CO1
2	 Standards used in instrumentation project: ISA, ANSI, & ASTM, ASME, NFPA, NEMA, SAMA. Engineering Documents Part-I: Need for engineering document, general guidelines for development of document, project stage, purpose, scope, contents, references for document, team of creation and users. 1) Process Flow Diagram (PFD) and Material Balance Sheet (MBS) 2) Piping and Instrumentation diagrams (P&ID) – practical applications. 3) Instrument Index Sheet 4) Instrument specifications sheet- for temperature, pressure, level, flow instruments and control valves. 	08	CO2
3	 Engineering Documents Part-II 1) Loop diagrams- pneumatic, electronic and digital data types. 2) Instrument Location Plan 3) Cable and Tray Routing and Cable Schedule 4) JB Schedule 5) Air header schedule 6) Instrument Hook- up diagrams - for control valve, transmitters (DP in liquid service, dry gas service,) Thermocouple, Temperature switch line mounted, flow transmitter, connections for air supply and output. etc. 7) BOM for erection 8) Logic diagrams, 9) SAMA flow diagram 	10	CO3
4	Systems Integration: Division of labour, control logic specification, HMI specification (development of mimic and graphic), System Architecture design, Network single line diagram generation, I/O address assignment (Partitioning)-Hardware & software address, Other tasks like -System testing, Safety Instrumented System (SIS), Safety Integrated Level (SIL), control room layout design, types of control system cabinet design.	07	CO4
5	 Procurement, Installation and Commissioning: Procurement: Engineering Procurement procedure, PO format, preparation of tender documents, bids, technical bid evaluation. Installation of instruments- Installation standards (stanchion, impulse tubing, clamping) installation of instrument junction box, earthing system, cable laying (cable trays, cable types, cable glands), tubing, instrument installation guidelines (for pressure instruments, DP transmitter, temperature and flow instruments, control valve.) Inspection: Need for Inspection, General Inspection Guidelines 	10	CO5

	Documents for Inspection- Factory acceptance test (FAT) ,Siteacceptance test (SAT).Commissioning: Pre-commissioning Procedures, stages, check outprocedure of control valve, DP transmitter etc. Calibration, testing		
	of instruments, operation and maintenance manual.		
6	Documentation Software Packages:	03	CO6
	Advantages of using software packages for documentation. Overview		
	of documentation software packages used in industry.		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

1. Andrew Williams, "Applied instrumentation in the process industries", 2nd Edition, Vol. 2, Gulf publishing company, 1979.

2. Michael D. Whitt, "Successful Instrumentation and Control Systems Design", ISA Publication, 2012.

- 3. Installation of Instrumentation & Process control systems- EEUA Handbook, 1977.
- 4. D. N. Pawar, D. K. Nikam, Fundamentals of Project Planning and Engineering, 1st Edition, Penram International Publishing-2017.

Additional References :

- Specification forms- ISA-20-1981- ISA Publication
- Piping and Instrumentation Diagram Documentation Criteria- Process Industry
- Practices Instrumentation Design Criteria-ONGC, Mumbai
- Commissioning Procedures -ONGC, Mumbai

Subject Code	Subject Name	Tea	ching Sch	eme	Credits Assigned					
ISC802	Instrument and	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
150802	System Design	4	-	-	4	-	-	4		

	Subject Name		Examination scheme								
Subject Code			Theory	Marks(100	Term	Pract.					
		Internal Assessment(20)			End Sem	work	and Oral	Oral	Total		
		Test1	Test2	Avg.	Exam	WUIK					
	Instrument										
ISC802	and System	20	20	20	80	-	-	-	100		
	Design										

Subject Code	Subject Name	credits
ISC802	Instrument and System Design	4
Course objectives	 To impart knowledge of selection and design considerations along with its calibration techniques. To make the students capable of sizing the control valve. To impart the students' knowledge about the types, sizing of and standards. To make the students capable to design electronic product, layout and its environment. To familiarize students with the concept of reliability engineerin 	control panels control room
Course Outcomes	 The students will be able to: 1. Select, design and calibrate transducers 2. Select and size control valves and actuators. 3. Apply knowledge to size the control panels. 4. Apply knowledge to design electronic product and enclosure designed for the terms used in Reliability engineering. 6. Apply knowledge in designing control room layout and its environment. 	gn

Prerequisite: Knowledge of sensors, control valves, PLC and DCS.

Module	Content	Hrs	CO
			Mapping
1	Design of Transducers: An overview of static and dynamic performance characteristics of instruments. Selection criteria, design considerations, calibration and installation for flow, temperature, pressure and level transducers.	08	CO1
2	Design of Control Valve: Review of flow equations. Valve selection and sizing for liquid service, gas or vapor service, flashing liquids, Newtonian fluids and mixed phase flow, Control valve noise estimation and Control valve cavitations. Actuator sizing. Selection criteria and design consideration of safety relief valves and rupture discs.	16	CO2

3	Control Panel Design:	08	CO3
	Panel selection-size, type, construction and IP classification, NEMA standard.		
	GA Diagrams, Power wiring and distribution, Typical wiring diagrams for		
	AI,DI,AO,DO,RTD, and T/C modules. Earthing scheme. Panel ventilation,		
	cooling and illumination. Operating consoles- ergonomics. Wiring accessories-		
	ferules, lugs, PVC ducts, spiral etc. Wire sizes and color coding. Packing,		
	Pressurized panels- X, Y, and Z Purging for installation in hazardous areas. Ex-		
	proof panels.		
4	Electronic product design:	08	CO4
	System Engineering, ergonomics, phases involved in electronic product design.		
	Enclosure Design :		
	Packing and enclosures design guidelines, Grounding and shielding, front panel		
	and cabinet design of an electronic product.		
5	Reliability engineering:	04	CO5
	Reliability concepts, causes of failures, bath tub curve, Quality and reliability,		
	MTTF, MTBF, and MTTR. Availability and Maintainability. Redundancy and		
	redundant systems.		
6	Control Room Design: Layout and environment, modern control room layout	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Les Driskell, "Control valve sizing", ISA.
- 2. Kim R Fowler, "Electronic Instrument Design", Oxford University- 1996.
- Bela G. Liptak, "Instrument Engineer's Hand Book Process Control", Chilton Company, 3rd Edition, 1995.
- **4.** Andrew Williams, "Applied instrumentation in the process industries", 2nd Edition, Vol. 1 & 3, Gulf publishing company,1979.

- 1. Harshvardhan, "Measurement Principles and Practices", Macmillan India Ltd-1993
- 2. Balaguruswamy E, "Reliability", Tata McGraw-Hill Pub.co. New Delhi, 1999.
- Mourad Samiha & ZorianYervant," Principles of Testing Electronic Systems", New York. John Wiley & Sons, 2000.
- 4. Lewis E E," Introduction to Reliability Engineering (2nd)", New York. John Wiley & Sons, 1996.
- 5. Anand M S," Electronic Instruments and Instrumentation Technology", New Delhi. Prentice Hall of India, 2004.
- Ott H W," Noise Reduction Techniques in Electronic System. ," (2) John Wiley & Sons New York, 1988.
- 7. Manual on product design: IISc C.E.D.T.
- 8. C.L.Albert and D.A. Coggan,""Fundamentals of Industrial Control", ISA, 1992.
- 9. R. W. Zape, "Valve selection hand book third edition", Jaico publishing house,2003.
- 10. Curtis Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.

Subject code	Subject Name	Teaching scheme			Credit assigned					
	Expert	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
ISDLO8041	System	4	-	-	4	-	-	4		

Sub Code		Examination scheme								
				ory (100)	1	Torre	Pract. and Ora Oral	Oral		
		Intern	al Assess	ment (20)	End	Term			Total	
		Test	Test2	Avg.	sem	work				
		1		0	Exam					
ISDLO8041	Expert System	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	credits
ISDLO801	Expert System	4
Course objective	 To provide an understanding on the fundamentals of neura and fuzzy systems. To learn the different intelligent techniques for control To gain knowledge in Expert systems To gain knowledge in genetic algorithm. 	l network
Course Outcome	 The students will able to Identify various networks and learning algorithms in artifinetwork (ANN). Define Fuzzy set, rules and membership function and also defuzzification for a given problem. Identify areas of application for Expert Systems. Apply the concepts of ANN and Fuzzy Logic in solving e problems and implementing controllers. Discuss various concepts of Genetic Algorithm Identify various hybrid control strategies.)

Prerequisite: Knowledge of control systems, optimization technique, expert system, Neural network and Genetic algorithm.

Module	Contents	Hrs	CO Mapping
1	Introduction to Artificial Neural Network (ANN) Neuron, nerve structure and synapse –Artificial Neuron and its model, activation functions, neural network architecture –Single Layer Perceptron– Multi Layer Perceptron – Back propagation algorithm (BPA). Supervised and Unsupervised learning. Associative Networks - Hopfield networks, Boltzmann machines.	09	CO1
2	Introduction to Fuzzy Logic Fuzzy set theory – Fuzzy sets – Operation on Fuzzy sets – Scalar cardinality, fuzzy cardinality, union and intersection, complement, equilibrium points, aggregation, projection, composition, decomposition, cylindrical extension, fuzzy relation – Fuzzy membership functions, De- fuzzification.	09	CO2
3	Introduction to Expert System What are Expert Systems, Features of Expert System, Basic activities of expert system and the areas in which they solve problems, Prospector systems-features, working. Knowledge representation in expert systems- using rules semantic nets, frames, Types of tools available for expert system building, Stages in the development of expert system tools. Building an Expert system.	09	CO3
4	Neural Networks and Fuzzy Logic for ControlFamiliarization of Neural Network Control and Fuzzy Tool Box.Development of PID control using ANN and Fuzzy Logic.	06	CO4
5	Genetic Algorithm Basic concept of Genetic algorithm – flow chart of GA – Genetic representations – encoding – Initialization and selection, Genetic operators– Mutation, Generational Cycle, applications – Concepts on search techniques – Tabu search, Ant-colony search and Particle Swarm Optimization (PSO).	09	CO5
6	Hybrid Control Schemes Neuro fuzzy systems –Adaptive neuro fuzzy inference system (ANFIS) – Optimization of membership function and rule base using Genetic Algorithm and PSO – Case study – Introduction to Support Vector Regression – Familiarization of ANFIS Tool Box.	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- 1. Stamatios V. Kartalopolous, .Understanding Neural Network and Fuzzy Logic., PHI Pvt Ltd.
- 2. Kishan Mehrotra, .Elements of ANN., 2nd Editon, Penram International Publishing(I) Pvt.Ltd.
- 3. Donald A. Waterman, "A Guide to Expert Systems", Addison-Wesley Publishing Company
- 4. David Goldberg. V "Genetic Algorithms in Search, Optimization, and Machine Learning", Pearson Education, 2009

References:

- 1. Laurene. V, Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Pearson Education, 2008.
- 2. Timothy. J, Ross, "Fuzzy Logic with Engineering Applications", Wiley, Third Edition, 2010.
- 3. Zimmermann. H.J, "Fuzzy set theory-and its Applications"- Springer international edition, 2011.
- 4. Miller W.T, Sutton . R.S and Webrose . P.J, "Neural Networks for Control", MIT Press, 1996.
- Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill-2008.
- 6. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III).
- 7. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007
- 9. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 10. Laurance Fausett, Englewood Cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Education, 1992.
- 11. Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.
- 12. S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition, 2nd Edition, 2013
- 13. Simon Haykin, 'Neural Networks', Pearson Education, 2003.
- 14. John Yen & Reza Langari, 'Fuzzy Logic Intelligence Control & Information', Pearson

Education, New Delhi, 2003.

- 15.M.Gen and R,Cheng, Genetic algorithms and optimization, Wiley Series in Engineering Design and Automation, 2000.
- 16. Hagan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford, 2013.
- 17. William S.Levine, "Control System Advanced Methods," The Control Handbook CRC Press 2011.

18.http://nptel.ac.in

Subject	Subject Name	Teaching scheme			Credit assigned			
code								
ISDLO8042	Optimal Control System	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		4	-	-	4	-	-	4

	Subject Name	Examination scheme									
Sub Code		Theory (out of 100)				Term	Pract.				
Sub Code		Internal Assessment			End Sem	work	and Ora	Oral	Total		
		Test1	Test2	Avg.	Exam	WOLK	Oral				
ISDLO8042	Optimal Control System	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits
ISDLO8042	Optimal Control System	4
Course Objective	 To make students understand the optimal control problems their ty to solve them by calculus of variation and dynamic programming a To make student to understand the linear regulator and track discrete time optimal control systems. 	approaches.
Course Outcome	 The students will be able to Identify various optimal control problems with performance r minimum time, minimum fuel, minimum energy, terminal cost problems. Describe the principle of calculus of variation, wherein to determine that minimizes a specified functional. Derive the necessary conditions for optimal control problem, and for the linear regulator problem. Apply variational calculus for solving discrete linear quadratic tracking problems. Explain the method of dynamic programming leading to a function that is amenable to solution by using simulation software. Solve optimal control problems. 	and general ine a function d optimal law regulator and

Prerequisite: Knowledge of Linear algebra, Fourier Series, and differential calculus.

Module	Торіс	Hrs	CO
1	Introduction: Formulation of optimal control problem, Performance	04	CO1
	measure, selecting a performance measure.		
2	Calculus of variation I	10	CO2
	Fundamental concepts: functional, Linearity of functional, closeness, increment, variation, maxima and minima of functional, fundamental theorem of calculus of variation. Extremum of functional of single function: fixed and free end point problems, Extremum of functional of several independent function: fixed and free end point problems.		

3	Calculus of variation II	10	CO3
	Constrained extremum of functions: elimination method, Lagrange multiplier		
	method Constrained extremum of functionals: point constraint, differential		
	equation constraints, isoperimetric constraints.		
	The Variational approach to optimal control problems: necessary conditions		
	for optimal control for different boundary conditions		
4	Linear Regulator and Tacking Systems:	06	CO4
	Linear Quadratic Regulator(LQR): Finite time LQR and infinite time LQR		
	Linear Quadratic Tracking Systems: Finite and infinite time Cases		
5	Discrete time Optimal control systems: variational calculus for discrete	06	CO5
	time systems, Discrete time LQR and tracking systems		
6	Dynamic Programming : Principle of optimality, application of principle of	12	CO6
	optimality to decision making, dynamic programming applied to routing		
	problem, Hamilton-Jacobi-Bellman (HJB) equation, LQR system using HJB		
	equation		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books.

- 1. D. S. Naidu, Optimal Control System, CRC Press LLC 2003,
- 2. D. E. Kirk, Optimal Control Theory An Introduction, Dover Publication, New York 1998.

Reference Books

- 1. B.D.O. Anderson and J.B. Moore. Optimal Control, Linear Quadratic Methods. Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.
- 2. H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-Interscience, New York, 1972.
- 3. A. Sage. Optimum systems control. Prentice Hall, 2nd edition, 1977
- 4. F. L. Lewis and V. L. Syrmos. Optimal Control theory. Wiley Interscience, 2nd edition, 1995.
- 5. R. D. Robinett, D. G. Wilson, G. R. Eisler, and J. E. Hurtado. Applied dynamic programming for optimization of dynamical systems. Advances in Design and Control. SIAM, Philadelphia, 2005.
- 6. K. Ogata, Discrete Time Control System, Second Edition, PHI, Inc. 1995.

Course Code	Course Name	c	g Scheme HOURS)	(Contact	Credit Assigned			
	Internet of	Theory	Pract.	Tut.	Theory	TW/Pract.	Tut	Total
ISDLO8043	Things (IOT)	4	-	-	4	-	-	4

		Examination scheme									
	Subject Name	Theory (out of 100)					Pract.				
Sub Code		Internal Assessment			End	Term	and	Oral	Total		
		Test1	Test2	Avg.	sem Exam	work	Oral	Ulai	Total		
ISDLO8043	Internet of Things (IOT)	20	20	20	80	-		-	100		

Subject Code	Subject Name	credits
ISDLO8043	Internet of Things (IOT)	4
Course objective	 To teach fundamentals of IoT To study data and knowledge management and use of dev technology. To understand IoT architecture and Integration of embedo with IoT To understand concept of IoT. To learn designing of industrial internet systems. To study overview of Android/ IOS app development Internet of Everything 	led devices
Course Outcome	 Students will be able to- 1. Demonstrate the knowledge of operation of IoT architecture 2. Identify the various technologies for implementing IoT 3. Discuss various communication Technologies used in IoT 4. Discuss various communication models and protocols used in 5. Discuss about the role of cloud computing in IoT 6. Illustrate the application of IoT in Industrial Automation a Real World Design Constraints. 	n IoT

Module	Content	Hrs	CO
			Mapping
1	Introduction to Internet of Things: An Overview	06	CO1
	Introduction – Definition and characteristics of IoT, Physical		
	design of IoT- Things in IoT, IoT protocol, Logical design of		
	IoT – IoT functional blocks, IoT Communication Models,		
	IoT communication APIs.		
2	IoT Enabling Technology	06	CO2
	Wireless Sensor Networks, Cloud Computing, Big Data		
	Analytics, Communication Protocols, Embedded Systems.		
	IOT Levels and Deployment Templates.		

3	Introduction to Communication Technologies	12	CO3
	802.15.4,ZigBee, BLE, WiFi, LORA,GSM		
	basic protocol ,topologies, data rate, range, power,		
	computations/bandwidth, QoS		
4	Communication Model and Protocols	12	CO4
	M2M vs IOT ,Resource Management, Registration, Discovery		
	Data Exchange Formats - XML & JSON, MQTT Protocol,		
	RESTFul Architecture, HTTP REST Model, CoAP Protocol		
5	Basics of Cloud Computing	06	CO5
	Cloud Based Architecture, Basics of Virtualization ° Specific		
	Characteristics that Define a Cloud, Software as a Service		
	(SaaS), Platform as a Service (PaaS) and Infrastructure as a		
	Service (IaaS) Cloud Delivery Models , Public Cloud, Private		
	Cloud, Hybrid Cloud and Community Cloud Deployment		
	Models ,Benefits, Challenges and Risks of Cloud Computing		
	Platforms and Cloud Services		
6	Case Studies of IOT	06	CO6
	Home (Smart Lighting and Intrusion detection), Cities(Smart		
	Parking, Garbage collection), Environment (Pollution detection,		
	Forest Fire Detection), Power (Smart Grid), Retail(Inventory		
	Management), Logistics(Fleet Tracking)		
	Industry(Machine Diagnosis & Prognosis), Heath(Monitoring		
	and Detection), Agriculture(Green House Monitoring, Animal		
	Husbandry.		
	•		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1stEdition, VPT, 2014.

2. Cloud Computing Black Book Edition-2014 by Jagannath Kallakurchi Wiley India

Reference Books:

- 1. Francis DaCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1st Edition, Apress Publications, 2013
- 2. Wimer Hazenberg, Menno Huisman and Sara Cordoba Rubino, "Meta Products: Building the Internet of Things", BIS publishers.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISDLO8044	Power Plant Instrumentation	Theory	Theory Pract. Tu		Theory	Pract.	Tut.	Total
	instrumentation	4	-	-	4	-	-	4

		Examination scheme								
Subject	Subject Name		Theory	Marks(100))		Pract. and Oral	Oral		
Code	Subject Maine	Intern	Internal Assessment(20)		× ,				End Sem	Term work
		Test1	Test2	Avg.	Exam		Orar			
ISDL08044	Power Plant Instrumentation	20	20	20	80	-	-	-	100	

Subject Code	Subject Name	credits
ISDLO8044	Power Plant Instrumentation	4
Course objectives	 To create awareness of energy resources and its scenario in worldwide. To study the concept of power generation using various resources. To study the role of Instrumentation in various power plants. To study and compare various power plants for optimal performance To acquire students the knowledge about hazards and safety i power plants. 	2.
Course Outcomes	 The students will be able to: 1. Identify the energy sources and explain power generation. 2. Describe operation and control of various equipment in ther plant. 3. Select the sites for hydroelectric power plants and explain its of 4. Explain the power generation and control of Nuclear power plant. 5. Describe the non-conventional energy resources. 6. Compare different types of power plants. 	

Prerequisite: Knowledge of energy resources, types of power plants and power generation.

Module	Content	Hrs	CO Mapping
1	Introduction: Energy sources, their availability, worldwide energy production, energy scenario of India. Introduction to Power generation, load curve, load factor. Classification of energy generation resources.	04	CO1
2	Thermal Power Plant - Method of power generation, layout and energy conversion process. Types of Turbines & their control. Types of Boilers and their control. Types of Generators and their control, Condensers. Types of Pumps and Fans, variable speed pumps and Fans, Material handling system, study of all loops-water, steam, fuel etc. Schematics of Gas turbine and Diesel power plant. Application of DCS in power plants.	14	CO2
3	Hydroelectric Power Plant - Site selection, Hydrology, Estimation electric power to be developed, classification of Hydropower plants. Types of Turbines for hydroelectric power plant, pumped storage plants, storage reservoir plants.	06	CO3
4	 Nuclear Power Plant – Concept of energy generation from nuclear fission, control of chain reaction. Schematics of Nuclear power plant, types of reactors, reactor control, safety measures. 	08	CO4
5	 Non-conventional Energy Resources – Wind Energy: Power in wind, Conversion of wind power, Aerodynamics of wind turbine, types of wind turbine and their modes of operation, power control of wind turbines, Betz limit, Pitch & Yaw control, wind mill, wind pumps, wind farms, different generator protections, safety. Solar Energy: Solar resource, solar energy conversion systems. Solar PV technology: Block diagram of PV system, advantages and limitations. Solar thermal energy system: Principle, solar collector and its types, solar concentrator and its types, safety. Introduction to Modern Biomass, Bio-fuels, Geothermal energy, Tidal energy and Ocean thermal energy. 	12	CO5
6	Comparison of different types of power plant: thermal power plant, hydro electric power plant, wind, solar, nuclear power plant on the basis of: Performance, efficiency, site selection, Economics-capital and running, safety. Introduction to Hybrid Power Generation concept.	04	CO6

Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of
 - 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

Text Books:

- 1. P. K. Nag, Power plant engineering, 3rd edition, 2010. McGraw Hill.
- 2. K. Krishnaswamy, M. Ponni Bala, Power Plant Instrumentation, 2011, Prentice Hall India.
- 3. R. K. Rajput, A Textbook of Power Plant Engineering, 2010, Laxmi Publications.

Reference Books:

- 1. Domkundwar, Power Plant Engg.
- 2. B. H. Khan, Non-conventional energy resources, McGraw Hill, New Delhi.
- 3. Chetan Singh Solanki, Renewable energy Technology, Prentice Hall Publication.
- 4. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, New Delhi.
- 5. G. D. Rai, Nonconventional energy sources, Khanna Publication.
- 6. Dickinson & Cheremision off, Solar Energy Technology vol I & II.
- 7. Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi ,Wind Energy Handbook (2001), John Wiley & Sons, ISBN: 0471489972.
- 8. James Manwell, J. F. Manwell, J. G. McGowan, Wind Energy Explained: Theory, Design and Application (2002), John Wiley and Sons Ltd, ISBN: 0471499722
- 9. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 10. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 11. G.F. Gilman, Boiler Control Systems Engineering, 2005, ISA Publication.

Sub code	Subject	Teachi	ng Scheme	e (Hrs)	(Credits A	ssigned	
	Name		Pract.	Tut.	Theory	Pract	Tut.	Total
ISDLO8045	Functional Safety	4	-	-	4			4

			Exa			on Schem	e		
		Г	Theory(o	ut of 100))				
Sub code	Subject Name		Internal Assessment (out of 20) Test 1 Test 2		End sem	Term Work	Pract. and	Oral	Total
		Test 1			Exam	WOIK	oral		
ISDLO8045	Functional safety	20	20	20	80		-		100

Subject Code	Subject Name	Credits					
ISDLO8045	Functional Safety 4						
Course Objectives	To make the students aware of basic concepts of safety instrumented system	m, standards					
	and risk analysis techniques.						
Course Outcomes	The students will be able to	The students will be able to					
	1. Define the role of Safety instrumented system in the industry.						
	2. Describe steps involved in Safety life cycle						
	3. Explain process and safety control with SIS technologies.						
	4. Learn types of events and combined probability calculations.						
	5. Identify and analyse the hazards						
	6. Determine the Safety integrity level.						

Prerequisite: Digital Electronics, transducers and Process Control.

Module	Contents	Hrs.	СО
			Mapping
1	Introduction :	06	CO1
	Safety Instrumented System (SIS) - need, features, components, difference		
	between basic process control system and SIS, Risk: how to measure risk, risk		
	tolerance, Safety integrity level, safety instrumented functions.		
	Standards and Regulation – HSE-PES, AIChE-CCPS, IEC-61508, IEC 61511		
	(2-16), ANSI/ISA-84.00.01-2004 (IEC 61511 Mod) & ANSI/ISA - 84.01-		
	1996.9, NFPA 85.10, API RP 556,11, API RP 14C,11, OSHA (29 CFR		
	1910.119 – Process Saftey Management of Highly Hazardous Chemicals)		
2	Safety life cycle:	06	CO2
	Standards and safety life cycle, analysis phase, realisation phase, operations		
	phase Allocation of Safety Functions to Protection Layers, Develop Safety		
	Requirements Specifications, SIS Design and Engineering, Installation,		

	Commissioning and Validation, Operations and Maintenance, Modification,		
	De-commissioning.		
3	Process Control	08	CO3
	Active / Dynamic , Safety Control - Passive / Dormant, Demand		
	Mode vs. Continuous Mode, Separation of Control and Safety		
	Systems - HSE-PES, AIChE-CCPS, IEC-61508, Common Cause and		
	Systematic or Functional Failures,		
	Protection Layers:		
	Prevention and mitigation layers, SIS Technologies: Pneumatic Systems, Relay		
	Systems, Solid State Systems, Microprocessors / PLC (Software based)		
	Systems		
4	Rules of Probability:	08	CO4
	Assigning probability to an event, types of events and event combination,		
	combining event probabilities, fault tree analysis, failure rate and probability,		
	simplifications and approximations.		
5	Process Hazard Analysis:	12	CO5
	Consequence analysis: Characterisation of potential events, dispersion, impacts,		
	occupancy considerations, consequence analysis tools.		
	Likelihood analysis: estimation and statistical analysis, fault propagation, event		
	tree analysis and fault tree analysis, Quantitative layer of protection analysis:		
	multiple initiating events, estimating initiating event frequencies and IPL		
	failure probabilities		
	HAZOP and SIL calculation and verification.		
6	Determining the Safety Integrity Level (SIL):	08	CO6
	Evaluating Risk, Safety Integrity Levels, SIL Determination Method : As Low		
	As Reasonably Practical (ALARP), Risk matrix, Risk Graph, Layers of		
	Protection Analysis (LOPA).		

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Reference Books:

- Paul Gruhn and H Jarry L. Cheddie," Safety Instrumented systems: Design, Analysis and Justification", ISA, 2nd edition, 2006
- 2. Dr. Eric W Scharpf, Heidi J Hartmann, Harlod W Thomas, "Practical SIL target selection : Risk analysis per the IEC 61511 safety Lifecycle", exida,2012.
- 3. Ed Marszal, Eric W Scharpf, "Safety Integrity Level Selection", ISA.

	University of Mumbai						
Course Code	Course Name		g Scheme t Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
ILO8021	Project Management (abbreviated as PM)	3	-	3	-	3	

Course								
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	Test Z	Avg.	Exam	(Hrs.)		
ILO8021	Project Management	20	20	20	80	03	-	100

Course Objectives	 To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.
Course Outcomes	 Student will be able to Apply selection criteria and select an appropriate project from different options. Write work break down structure for a project and develop a schedule based on it. Identify opportunities and threats to the project and decide an approach to deal with them strategically. Use Earned value technique and determine & predict status of the project. Capture lessons learned during project phases and document them for future reference

Module	Contents	Hours						
1	Project Management Foundation: Definition of a project, Project Vs	5						
	Operations, Necessity of project management, Triple constraints, Project							
	life cycles (typical & atypical) Project phases and stage gate process.							
	Role of project manager. Negotiations and resolving conflicts. Project							
	management in various organization structures. PM knowledge areas as							
	per Project Management Institute (PMI).							
2	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6						
3	Project Planning and Scheduling: Work Breakdown structure (WBS)	8						
	and linear responsibility chart, Interface Co-ordination and concurrent							
	engineering, Project cost estimation and budgeting, Top down and							

	bottoms up budgeting, Networking and Scheduling techniques. PERT,	
	CPM, GANTT chart. Introduction to Project Management Information	
	System (PMIS).	
4	Planning Projects: Crashing project time, Resource loading and	6
	leveling, Goldratt's critical chain, Project Stakeholders and	
	Communication plan. Risk Management in projects: Risk management	
	planning, Risk identification and risk register. Qualitative and	
	quantitative risk assessment, Probability and impact matrix. Risk	
	response strategies for positive and negative risks	
5	Executing Projects: Planning monitoring and controlling cycle.	8
-	Information needs and reporting, engaging with all stakeholders of the	-
	projects. Team management, communication and project meetings.	
	Monitoring and Controlling Projects: Earned Value Management	
	techniques for measuring value of work completed; Using milestones for	
	measurement; change requests and scope creep. Project audit.	
	Project Contracting Project procurement management, contracting and	
	outsourcing,	
6		6
6	Project Leadership and Ethics: Introduction to project leadership,	6
	ethics in projects. Multicultural and virtual projects.	
	Closing the Project: Customer acceptance; Reasons of project	
	termination, Various types of project terminations (Extinction,	
	Addition, Integration, Starvation), Process of project termination,	
	completing a final report; doing a lessons learned analysis;	
	acknowledging successes and failures; Project management templates	
	and other resources; Managing without authority; Areas of further study.	

Reference Books:

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name		g Scheme t Hours)	Credits Assigned				
Code		Theory	Tutorial	Theory	Tutorial	Total		
ILO8022	Finance Management (abbreviated as FM)	3	-	3	-	3		

		Examination Scheme						
Course		Theory						
Course code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
ILO8022	Finance Management	20	20	20	80	03	-	100

	Overview of Indian financial system, instruments and market					
Course	• Basic concepts of value of money, returns and risks, corporate finance,					
Objectives	working capital and its management					
	• Knowledge about sources of finance, capital structure, dividend policy					
Course	Student will be able to					
Course Outcomes	 Understand Indian finance system and corporate finance 					
Outcomes	• Take investment, finance as well as dividend decisions					

Module	Contents	Hours
1	Overview of Indian Financial System: Characteristics, Components	6
	and Functions of Financial System. Financial Instruments: Meaning,	
	Characteristics and Classification of Basic Financial Instruments -	
	Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	
	Deposit, and Treasury Bills. Financial Markets: Meaning,	
	Characteristics and Classification of Financial Markets - Capital	
	Market, Money Market and Foreign Currency Market. Financial	
	Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions - Commercial Banks, Investment-Merchant Banks and	
	Stock Exchanges	
2	Concepts of Returns and Risks: Measurement of Historical Returns	6
	and Expected Returns of a Single Security and a Two-security Portfolio;	
	Measurement of Historical Risk and Expected Risk of a Single Security	
	and a Two-security Portfolio.	
	Time Value of Money: Future Value of a Lump Sum, Ordinary	
	Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary	
	Annuity, and Annuity Due; Continuous Compounding and Continuous	
	Discounting.	
3	Overview of Corporate Finance: Objectives of Corporate Finance;	9
	Functions of Corporate Finance-Investment Decision, Financing	
	Decision, and Dividend Decision.	
	Financial Ratio Analysis: Overview of Financial Statements-Balance	
	Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of	
	Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity	
	Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market	

	Ratios; Limitations of Ratio Analysis.								
4	Capital Budgeting: Meaning and Importance of Capital Budgeting;								
	Inputs for Capital Budgeting Decisions; Investment Appraisal								
	Criterion—Accounting Rate of Return, Payback Period, Discounted								
	Payback Period, Net Present Value(NPV), Profitability Index, Internal								
	Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)								
	Working Capital Management: Concepts of Meaning Working								
	Capital; Importance of Working Capital Management; Factors Affecting								
	an Entity's Working Capital Needs; Estimation of Working Capital								
	Requirements; Management of Inventories; Management of								
	Receivables; and Management of Cash and Marketable Securities.								

Reference Books:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course Code	Course Name		g Scheme t Hours)	Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total		
ILO8023	Entrepreneurship Development and Management (abbreviated as EDM)	3	-	3	-	3		

Course code		Examination Scheme							
	Course Name								
		Internal Assessment			End	Exam	Term	Total	
couc		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total	
		1050 1	1051 2	Avg.	Exam	(Hrs.)			
	Entrepreneurship								
ILO8023	Development and	20	20	20	80	03	-	100	
	Management								

Course Objectives	 To acquaint with entrepreneurship and management of business Understand Indian environment for entrepreneurship Idea of EDP, MSME
Course Outcomes	 Student will be able to Understand the concept of business plan and ownerships Interpret key regulations and legal aspects of entrepreneurship in India Understand government policies for entrepreneurs

Module	Contents	Hours
1	Overview Of Entrepreneurship: Definitions, Roles and	4
	Functions/Values of Entrepreneurship, History of Entrepreneurship	
	Development, Role of Entrepreneurship in the National Economy,	
	Functions of an Entrepreneur, Entrepreneurship and Forms of Business	
	Ownership	
	Role of Money and Capital Markets in Entrepreneurial Development:	
	Contribution of Government Agencies in Sourcing information for	
	Entrepreneurship	
2	Business Plans And Importance Of Capital To Entrepreneurship:	9
	Preliminary and Marketing Plans, Management and Personnel, Start-up	
	Costs and Financing as well as Projected Financial Statements, Legal	
	Section, Insurance, Suppliers and Risks, Assumptions and Conclusion,	
	Capital and its Importance to the Entrepreneur	
	Entrepreneurship And Business Development: Starting a New	
	Business, Buying an Existing Business, New Product Development,	
	Business Growth and the Entrepreneur Law and its Relevance to	
	Business Operations	
3	Women's Entrepreneurship Development, Social entrepreneurship-role	5
	and need, EDP cell, role of sustainability and sustainable development	
	for SMEs, case studies, exercises	
4	Indian Environment for Entrepreneurship: key regulations and legal	8
	aspects, MSMED Act 2006 and its implications, schemes and policies	

	of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	
5	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	8
6	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	5

Reference Books:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course	Course Name	Teaching Scheme	Credits Assigned			

Code		(Contac	t Hours)			
		Theory	Tutorial	Theory	Tutorial	Total
ILO8024	Human Resource Management (abbreviated as HRM)	3	-	3	-	3

Course		Examination Scheme						
				Theor	·у			
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
couc		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai
		Test I	Iest Z	Avg.	Exam	(Hrs.)		
ILO8024	Human Resource Management	20	20	20	80	03	-	100

	• To introduce the students with basic concepts, techniques and practices of
	the human resource management.
	• To provide opportunity of learning Human resource Management (HRM)
	processes, related with the functions, and challenges in the emerging
	perspective.
~	
Course	• To familiarize the students about the latest developments, trends & different
Objectives	aspects of HRM.
	• To acquaint the student with the importance of behavioral skills, Inter-
	personal, inter- group in an organizational setting.
	• To prepare the students as future organizational change facilitators, stable
	leaders and managers, using the knowledge and techniques of human
	resource management.
	Learner will be able to
	• Gain knowledge and understand the concepts about the different aspects of
	the human resource management.
	• Understand and tackle the changes and challenges in today's diverse,
Course	dynamic organizational setting and culture.
Outcomes	• Utilize the behavioral skill sets learnt, in working with different people,
	teams & groups within the national and global environment.
	• Apply the acquired techniques, knowledge and integrate it within the
	engineering/ non engineering working environment emerging as future
	engineers and managers.

Module	Contents	Hours				
1	Introduction to HR: Human Resource Management- Concept, Scope	05				
	and Importance, Interdisciplinary Approach Relationship with other					
	Sciences, Competencies of HR Manager, HRM functions. Human					
	resource development (HRD): changing role of HRM – Human resource					
	Planning, Technological change, Restructuring and rightsizing,					
	Empowerment, TQM, Managing ethical issues.					
2	Organizational Behavior (OB) : Introduction to OB Origin, Nature and	07				

	Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues, Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness, Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study	
3	Organizational Structure & Design: Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	06
4	Human resource Planning: Recruitment and Selection process, Job- enrichment, Empowerment - Job-Satisfaction, employee morale. Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning. Training & Development: Identification of Training Needs, Training Methods	05
5	Emerging Trends in HR : Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development , managing processes & transformation in HR. Organizational Change, Culture, Environment, Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	06
6	 HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries Strategic HRM Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals Labor Laws & Industrial Relations Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act 	10

Reference Books:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

	University of Mumbai								
Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8025	Professional Ethics and Corporate Social Responsibility (abbreviated as PECSR)	3	-	3	-	3			

Course		Examination Scheme						
		Theory						
	Course Name	Interna	al Assess	ment	End	Exam	Term	Total
couc		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total
		Test I	Test 2	Avg.	Exam	(Hrs.)		
ILO8025	Professional Ethics and Corporate Social Responsibility	20	20	20	80	03	-	100

Course	• To understand professional ethics in business			
Objectives	• To recognized corporate social responsibility			
	Student will be able to			
Course	Understand rights and duties of business			
Outcomes	• Distinguish different aspects of corporate social responsibility			
Outcomes	Demonstrate professional ethics			
	Understand legal aspects of corporate social responsibility			

Module	Contents	Hours
1	Professional Ethics and Business: The Nature of Business Ethics;	04
	Ethical Issues in Business; Moral Responsibility and Blame;	
	Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties	
	of Business	
2	Professional Ethics in the Marketplace: Perfect Competition;	08
	Monopoly Competition; Oligopolistic Competition; Oligopolies and	
	Public Policy	
	Professional Ethics and the Environment: Dimensions of Pollution	
	and Resource Depletion; Ethics of Pollution Control; Ethics of	
	Conserving Depletable Resources	
3	Professional Ethics of Consumer Protection: Markets and Consumer	06
	Protection; Contract View of Business Firm's Duties to Consumers; Due	
	Care Theory; Advertising Ethics; Consumer Privacy	
	Professional Ethics of Job Discrimination: Nature of Job	
	Discrimination; Extent of Discrimination; Reservation of Jobs.	
4	Introduction to Corporate Social Responsibility: Potential Business	05
	Benefits—Triple bottom line, Human resources, Risk management,	
	Supplier relations; Criticisms and concerns-Nature of business;	

	Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
5	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08
	Corporate Social Responsibility and Small and Medium Enterprises	
	(SMEs) in India, Corporate Social Responsibility and Public-Private	
	Partnership (PPP) in India	
6	Corporate Social Responsibility in Globalizing India: Corporate	08
	Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry	
	of Corporate Affairs, Government of India, Legal Aspects of Corporate	
	Social Responsibility—Companies Act, 2013.	

Reference Books:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai								
Course	Course Name	Teaching Scheme (Contact Hours)				dits Assigne	ed	
Code		Theory	Tutorial	Theory	Tutorial	Total		
ILO8026	Research Methodology (abbreviated as RM)	3	-	3	-	3		

		Examination Scheme							
Course				Theor	у				
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	TOLAT	
		Test I	Test Z	Avg.	Exam	(Hrs.)			
ILO8026	Research Methodology	20	20	20	80	03	-	100	

Course Objectives	 To understand Research and Research Process To acquaint students with identifying problems for research and develop research strategies To familiarize students with the techniques of data collection, analysis of data and interpretation
Course Outcomes	 Student will be able to Prepare a preliminary research design for projects in their subject matter areas Accurately collect, analyze and report data Present complex data or situations clearly Review and analyze research findings

Module	Contents	Hours
1	Introduction and Basic Research Concepts: Research – Definition;	10
	Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law,	
	Principle. Research methods vs Methodology, Need of Research in	
	Business and Social Sciences, Objectives of Research, Issues and	
	Problems in Research, Characteristics of Research: Systematic, Valid,	
	Verifiable, Empirical and Critical	
2	Types of Research: Basic Research, Applied Research, Descriptive	08
	Research, Analytical Research, Empirical Research, Qualitative and	
	Quantitative Approaches	
3	Research Design and Sample Design : Research Design – Meaning,	08
	Types and Significance, Sample Design - Meaning and Significance	
	Essentials of a good sampling Stages in Sample Design Sampling	
	methods/techniques Sampling Errors	
4	Research Methodology : Meaning of Research Methodology, Stages in	08
	Scientific Research Process	
	a. Identification and Selection of Research Problem	
	b. Formulation of Research Problem	
	c. Review of Literature	
	d. Formulation of Hypothesis	

	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
5	Formulating Research Problem: Considerations: Relevance, Interest,	04
	Data Availability, Choice of data, Analysis of data, Generalization and	
	Interpretation of analysis	
6	Outcome of Research: Preparation of the report on conclusion reached,	04
	Validity Testing & Ethical Issues, Suggestions and Recommendation	

Reference Books:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai						
Course Code	Course Name		g Scheme t Hours)	Credits Assigned		
Code		Theory	Tutorial	Theory	Tutorial	Total
ILO8027	IPR and Patenting (abbreviated as IPRP)	3	-	3	-	3

		Examination Scheme							
Carrie	Course Name								
Course code		Internal Assessment			End	Exam	Term	Total	
coue		Test 1	Test 2	A	Sem.	Duration	Work	Total	
		Test 1	Test 2	Avg.	Exam	(Hrs.)			
ILO8027	IPR and Patenting	20	20	20	80	03	-	100	

	• To understand intellectual property rights protection system							
• To promote the knowledge of Intellectual Property Laws of In								
Objectives	as International treaty procedures							
Objectives	• To get acquaintance with Patent search and patent filing procedure and							
	• applications							
	Student will be able to							
Course	understand Intellectual Property assets							
Outcomes	 assist individuals and organizations in capacity building 							
Outcomes	• work for development, promotion, protection, compliance, and							
	enforcement of Intellectual Property and Patenting							

Module	Contents	Hours
1	Introduction to Intellectual Property Rights (IPR): Meaning of IPR,	05
	Different category of IPR instruments - Patents, Trademarks,	
	Copyrights, Industrial Designs, Plant variety protection, Geographical	
	indications, Transfer of technology etc.	
	Importance of IPR in Modern Global Economic Environment:	
	Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR	
	as an instrument of development	
2	Enforcement of Intellectual Property Rights: Introduction, Magnitude	07
	of problem, Factors that create and sustain counterfeiting/piracy,	
	International agreements, International organizations (e.g. WIPO, WTO)	
	activein IPR enforcement	
	Indian Scenario of IPR: Introduction, History of IPR in India,	
	Overview of IP laws in India, Indian IPR, Administrative Machinery,	
	Major international treaties signed by India, Procedure for submitting	
	patent and Enforcement of IPR at national level etc.	
3	Emerging Issues in IPR: Challenges for IP in digital economy, e-	06
	commerce, human genome, biodiversity and traditional knowledge etc.	
4	Basics of Patents: Definition of Patents, Conditions of patentability,	07
	Patentable and non-patentable inventions, Types of patent applications	

	(e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	
5	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
6	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Reference Books:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET

15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

	University of Mumbai						
Course Code	Course Name		g Scheme et Hours)	Credits Assigned			
Code		Theory	Tutorial	Theory	Tutorial	Total	
ILO8028	Digital Business Management (abbreviated as DBM)	3	-	3	-	3	

		Examination Scheme							
Course				Theor	y				
code	Course Name	Interna	al Assess	ment	End	Exam	Term	Total	
coue		Test 1	Test 2	Ava	Sem.	Duration	Work	Totai	
		Test I	Iest Z	Avg.	Exam	(Hrs.)			
ILO8028	Digital Business Management	20	20	20	80	03	-	100	

Course Objectives	 To familiarize with digital business concept To acquaint with E-commerce To give insights into E-business and its strategies
Course Outcomes	 Student will be able to Identify drivers of digital business Illustrate various approaches and techniques for E-business and management Prepare E-business plan

Module	Contents	Hours
1	Introduction to Digital Business: Introduction, Background and	09
	current status, E-market places, structures, mechanisms, economics and	
	impacts Difference between physical economy and digital economy,	
	Drivers of digital business- Big Data & Analytics, Mobile, Cloud	
	Computing, Social media, BYOD, and Internet of Things(digitally	
	intelligent machines/services) Opportunities and Challenges in Digital	
	Business,	
2	Overview of E-Commerce: E-Commerce- Meaning, Retailing in e-	06
	commerce-products and services, consumer behavior, market research	
	and advertisement B2B-E-commerce-selling and buying in private e-	
	markets, public B2B exchanges and support services, e-supply chains,	
	Collaborative Commerce, Intra business EC and Corporate portals Other	
	E-C models and applications, innovative EC System-From E-	
	government and learning to C2C, mobile commerce and pervasive	
	computing EC Strategy and Implementation-EC strategy and global EC,	
	Economics and Justification of EC, Using Affiliate marketing to	
	promote your e-commerce business, Launching a successful online	
	business and EC project, Legal, Ethics and Societal impacts of EC	
3	Digital Business Support services: ERP as e -business backbone,	06
	knowledge Tope Apps, Information and referral system, Application	
	Development: Building Digital business Applications and Infrastructure	

4	Managing E-Business-Managing Knowledge, Management skills for	06
	e-business, Managing Risks in e -business, Security Threats to e-	
	business -Security Overview, Electronic Commerce Threats, Encryption,	
	ryptography, Public Key and Private Key Cryptography, Digital	
	Signatures, Digital Certificates, Security Protocols over Public	
	Networks: HTTP, SSL, Firewall as Security Control, Public Key	
	Infrastructure (PKI) for Security, Prominent Cryptographic Applications	
5	E-Business Strategy-E-business Strategic formulation- Analysis of	04
	Company's Internal and external environment, Selection of strategy,	
	E-business strategy into Action, challenges and E-Transition	
	(Process of Digital Transformation)	
6	M Materializing e-business: From Idea to Realization-Business plan	08
	preparation	
	Case Studies and presentations	

Books Recommended:

Reference Books:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u> OECD Publishing

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

University of Mumbai									
Course Code	Course Name		g Scheme et Hours)	Credits Assigned					
		Theory	Tutorial	Theory	Tutorial	Total			
ILO8029	Environmental Management (abbreviated as EVM)	3	-	3	-	3			

	Course Name	Examination Scheme								
Course										
code		Internal Assessment			End	Exam	Term	Total		
code		Test 1	Test 2	Avg.	Sem.	Duration	Work	Total		
					Exam	(Hrs.)				
ILO8029	Environmental Management	20	20	20	80	03	-	100		

	• Understand and identify environmental issues relevant to India and global
Course	concerns
Objectives	• Learn concepts of ecology
	Familiarise environment related legislations
	Student will be able to
Course	• Understand the concept of environmental management
Outcomes	• Understand ecosystem and interdependence, food chain etc.
	Understand and interpret environment related legislations

Module	Contents	Hours
1	Introduction and Definition of Environment: Significance of	10
	Environment Management for contemporary managers, Career	
	opportunities.	
	Environmental issues relevant to India, Sustainable Development, The	
	Energy scenario.	
2	Global Environmental concerns : Global Warming, Acid Rain, Ozone	06
	Depletion, Hazardous Wastes, Endangered life-species, Loss of	
	Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical	
	hazards, etc.	
3	Concepts of Ecology: Ecosystems and interdependence between living	05
	organisms, habitats, limiting factors, carrying capacity, food chain, etc.	
4	Scope of Environment Management, Role & functions of Government	10
	as a planning and regulating agency.	
	Environment Quality Management and Corporate Environmental	
	Responsibility	
5	Total Quality Environmental Management, ISO-14000, EMS	05
	certification.	
6	General overview of major legislations like Environment Protection Act,	03
	Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest	
	Act, Factories Act, etc.	

Books Recommended:

Reference Books:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

Subject code	Subject Name	Tea	ching sch	eme	Credit assigned				
	Instrumentation Project	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ISL801	Documentation and Execution- Lab Practice	-	2	-	-	1	-	1	

		Examination scheme									
	Subject Name		Theory(out of 100)						
Sub Code		Internal Assessment			End sem exam	Term work	Pract. And oral	Oral	Total		
		Test1	Test2	Avg.							
	Instrumentation										
	Project										
ISL801	Documentation	-	-	-	-	25	-	25	50		
	and Execution-										
	Lab Practice										

Subject Code	Subject Name	Credits					
ISL801	Instrumentation Project Documentation and Execution	1					
Course objective	 To provide knowledge of types and execution of I&C type project This Course aims to explain Project deliverables and engineering activities of project documentation. To get acquainted with commercial software used for documentation. 						
Course Outcome	 The students will able to 1. Apply standards used in instrumentation project for predeliverables. 2. Interpret, design and construct documents such as PFD, P sheet. 3. Apply ISA specification data sheet / loop standard, to prepare specification sheet and construct loop wiring diagram. 4. Interpret, design and construct Hook-up diagram, and dever prepare different project schedule. 5. Select and apply procurement, installation procedure commissioning and commissioning activities with Inspection. 6. Select and support documentation software packages used in fille. 	&ID, Index Instrument of skill to and pre-					

Syllabus: Same as that of Subject ISC801 Instrumentation Project Documentation and Execution.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Summarize instrument/unit symbols and identification, tagging and line designation procedure from ISA/ANSII Standard	C01
2	Apply symbols and identification standard for preparation of graphical document such as Process Flow Diagrams.	CO2
3	To develop of Piping & Instrumentation Diagram using PFD of Expt-2.	CO2
4	Prepare instrument index sheet for tags used in P&ID of Expt-3.	CO2
5	Prepare ISA specification forms (for temperature, pressure, level ,flow instruments, CV)	CO3
6	Develop loop wiring diagram of pneumatic and electronic loops.	CO3
7	Develop sample hook-up drawing and prepare BOM.	CO4
8	Study and Development of Detailed Engineering schedules.(Project schedule / Cable schedule / JB schedule / AH schedule)	CO4
9	Learn procedure to perform pre-commissioning activities.(Hydro Test / Loop checking / Trouble shooting /calibration of DPT or Control valve etc)	CO5
10	Survey of instrumentation software and study different features	CO6

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of Laboratory work which includes minimum study of eight experiments/ assignments / Creation of Documents

Other task: (Optional) Visit to any one Engineering consultants office /organizations to understand their Working Environment & submission of Report.

The distribution of marks for term work shall be as follows:	
Laboratory work (Experiments/Assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance (Theory and Practical)	: 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL 803	Expert System- Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Practice	-	- 2 -			1	-	1

		Examination scheme									
			Theory(out of 10))		D (
Sub Code	Subject Name	Interi	nal Asses	ssment	End sem exam	Term Pract. work And Oral 7 oral			Total		
		Test1	Test2	Avg.							
	Expert										
ISL 803	System- Lab	-	-	-	-	25	-	25	50		
	Practice										

Subject Code	Subject Name C	redits
ISL803	Expert System- Lab Practice	1
Course objective	 To provide an understanding on the fundamentals of neural 1 and fuzzy systems. To learn the different intelligent techniques for control To gain knowledge in Expert systems 	network
	4. To gain knowledge in genetic algorithm.	
Course Outcome	 The students will able to Identify various networks and learning algorithms in artificia network. Define Fuzzy set, rules and membership function ar defuzzification for a given problem. Identify areas of application for Expert Systems. Apply the concepts of ANN and Fuzzy Logic in solving enginger problems and implementing controllers. Discuss various concepts of Genetic Algorithm Identify various hybrid control strategies. 	nd also

Syllabus: Same as that of Subject ISDLO8041 Expert System.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Example for Perceptron learning	CO1
2	Multilayer Feedforward neural networks	CO1
3	Hopfield model for pattern storage task	CO1
4	Solution to travelling salesman problem using ANN	CO1
5	Temperature controller using Fuzzy logic	CO2
6	Washing machine control using Fuzzy logic	CO2
7	Design of PID control using ANN and Fuzzy Toolbox.	CO4
8	Assignment on Expert systems	CO3
9	Assignment on Expert Systems	CO3
10	Assignment on Genetic algorithm	CO5
11	Assignment on Hybrid control schemes	CO6

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

University of Mumbai, Instrumentation Engineering, Rev 2016-17 115

Subject code	Subject Name	Te	aching schem	ne	Credit assigned			
ISL803	Internet of Things- Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
152000	Practice	-	02	-	-	1	-	1

	Subject Name	Examination scheme								
Sub Code		Inter	nal Assess	ment	End	Term work	Pract. And oral	Oral	Total	
		Test1	Test2	Avg.	Sem Exam					
ISL803	Internet of Things- Lab Practice	-	-	-	-	25	-	25	50	

Subject Code	Subject Name	Credits				
ISL803	Internet of Things- Lab Practice	1				
Course objectives	 To impart knowledge about fundamentals of IoT To describe data and knowledge management and use of device technology. To give knowledge of IoT architecture and Integration of embed devices with IoT To explain the concept of IIoT. To impart knowledge about designing of industrial internet syste To describe overview of Android/ IOS app development tools a of Everything 	lded ems.				
Course Outcomes	 The students will be able to : 1. Use microcontroller based embedded platforms in IOT 2. Use microprocessor based embedded platforms in IOT 3. Use wireless peripherals for exchange of data. 4. Make use of Cloud platform to upload and analyse any sensor data 5. Use of Devices, Gateways and Data Management in IoT. 6. Use the knowledge and skills acquired during the course to build and test a complete, working IoT system involving prototyping, programming and data analysis. 					

Syllabus: Same as that of Subject ISDLO8043 Internet of Things.

List of Suggested Laboratory Experiments:

Sr. No.	Detailed Content	CO Mapping
1	Introduction to Arduino platform and programming	CO1
2	Interfacing Arduino to Zigbee module	CO1,CO3
3	Interfacing Arduino to GSM module	CO1,CO3
4	Interfacing Arduino to Bluetooth Module	CO1,CO3
5	Introduction to Raspberry PI platform and python programming	CO2
	University of Mumbai, Instrumentation Engineering, Rev 2016-17	

6	Interfacing sensors to Raspberry PI	CO2
7	Communicate between Arduino and Raspberry PI using any wireless	CO1,CO2,CO3
	medium	
8	Setup a cloud platform to log the data	CO4
9	Log Data using Raspberry PI and upload to the cloud platform	CO5
10	Design an IOT based system	CO6

Any other additional experiment based on syllabus which will help students to understand topic/concept

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
ISL803	Power Plant Instrumentation	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	-Lab Practice	-	2	-	-	1	-	1

Sub Code	Subject Name	Interi	nal Assess	ment	End Sem	Term	Pract. and	Oral	Total
		Test 1	Test 2	Avg.	Exam	work	Oral		1000
ISL803	Power Plant Instrumentatio n- Lab Practice	-	-	-	-	25	-	25	50

Subject Code	Subject Name	Credits
ISL803	Power Plant Instrumentation- Lab Practice	1
Course objectives	 To create awareness of energy resources and its scenario in India and 1. To study the concept of power generation using various reso 2. To study the role of Instrumentation in various power plants 3. To study and compare various power plants for optimal perf 4. To acquire students the knowledge about hazards and safety 	ources. 3. Formance.
Course Outcomes	 The students will be able to: 1. Identify the energy sources and explain power generation. 2. Describe operation and control of various equipment in them 3. Select the sites for hydroelectric power plants and explain it 4. Explain the power generation and control of Nuclear power 5. Describe the non-conventional energy resources. 	s operation.
	 Describe the non-conventional energy resources. Compare different types of power plants. 	

Syllabus: Same as that of Subject ISDLO8044 Power Plant Instrumentation.

List of Laboratory Experiments/ Assignments:

Sr.	Detailed Content	CO Mapping
No.		
1	Assignment on Energy Sources	CO1
2	Assignment on Thermal Power plant	CO2
3	Assignment on Hydroelectric power plant	CO3
4	Assignment on Nuclear Power plant	CO4
5	Assignment on Nonconventional Energy Resources	CO5
6	Assignment on Comparison of various power plants	CO6
7	Assignment on Introduction to Hybrid Power generation concept	CO6

Additional experiments/assignments based on syllabus which will help students to understand topic/concept can be considered.

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Те	aching schen	ne	Credit assigned				
ISL803	Functional Safety- Lab	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
131.003	Practice	-	02	-	-	1	-	1	

Sub Code	Subject Name	Examination scheme									
		Inter	nal Assess	ment	End	Term work	Pract. And oral	Oral	Total		
		Test1	Test2	Avg.	Sem Exam						
ISL803	Functional Safety - Lab Practice	-	-	-	-	25	-	25	50		

Subject Code	Subject Name	Credits				
ISL803	1					
Course objectives	To make the students aware of basic concepts of safety instrumented system, standards and risk analysis techniques.					
Course Outcomes	 The students will be able to 1. Define the role of Safety instrumented system in 2. Describe steps involved in Safety life cycle 3. Explain process and safety control with SIS techn 4. Learn types of events and combined probability of 5. Identify and analyse the hazards 6. Determine the Safety integrity level. 	nologies.				

Syllabus: Same as that of Subject ISDLO8045 Functional Safety.

List of Laboratory Experiments/ Assignments:

Sr. No.	Detailed Content	CO Mapping
1	Assignment on Introduction to Functional safety	CO1
2	Assignment on Safety Life cycle	CO2
3	Assignment on Protection layers and SIS technologies	CO3
4	Assignment on Rules of Probability- types of events, numerical	CO4
5	Assignment on Rules of Probability – numerical on event tree and fault tree analysis	CO4
6	Assignment on Consequence analysis	CO5
7	Assignment on Process hazard	CO5
8	Assignment on SIL determination methods	CO6
9	Assignment on Fault propagation modelling techniques using Excel	CO5
10	Assignment on SIL determination using Excel	CO6
11	Case study	CO1-CO6
11	Case study	C01-

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

> Industry visit is advised to understand the Functional Safety subject.

University of Mumbai, Instrumentation Engineering, Rev 2016-17 122

Practical/Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum eight assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments)	: 10 Marks
Laboratory work (programs / journal)	: 10 Marks
Attendance	: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Teaching scheme			Credit assigned			
ISL804	Project-II	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
		-	12	-	-	6	-	6

Sub Code	Subject Name	Examination schemeTheory (out of 100)TermPractOralTo							
		Internal Assessment			End	work	. and		
		Test1	Test2	Avg.	sem		Oral		
				U	Exam				
ISL804	Project-II	-	-	-	-	100	-	50	150

Term Work:

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- 1. Scope and objective of the project work.
- 2. Extensive Literature survey.
- 3. Progress of the work (Continuous assessment)
- 4. Design, implementation, and analysis of the project work.
- 5. Results, conclusions and future scope.
- 6. Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.