Program: BE Mechanical Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester VI

Course Code: MEC603 and Course Name: Finite Element Analysis

Time: 1-hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	1 Example of 2-D Element is
Option A:	bar
Option B:	triangle
Option C:	hexahedron
Option D:	tetrahedron
Q2.	The number of shape functions will be equal to the number of
Option A:	nodes of element
Option B:	elements of the structure
Option C:	size of the structure
Option D:	coordinates
Q3.	How many nodes are in 3-D brick element
Option A:	3
Option B:	6
Option C:	5
Option D:	8
Q4.	The first book on Finite Element Methods were written and published in 1967
Option A:	Wolowitz and Cooper
Option B:	Farrahfowler and Hofstader
Option C:	Bing and Geller
Option D:	Zienkiewicz and Chung
Q5.	Condition of a system that fluctuate with time is called as
Option A:	Transverse State Condition
Option B:	Transient State Condition
Option C:	Transistent State Condition
Option D:	Transgressive State Condition
Q6.	The mathematical process of dividing a domain into a number of subdomains

	of finite length is called as
Option A:	Cutting
Option B:	Mincing
Option C:	Discrete Icing
Option D:	Discretizing
Q7.	The dependent variable of a differential equation is known as
Option A:	pre primary variable
Option B:	primary variable
Option C:	secondary variable
Option D:	higher secondary variable
Q8.	For thermal analysis, the field variable is
Option A:	stress
Option B:	strain
Option C:	displacement
Option D:	temperature
Q9.	Finite element analysis deals with
Option A:	Approximate numerical solutions
Option B:	Non boundary value problems
Option C:	Partial Differential equations
Option D:	Differential equations
Q10.	The shape function hasvalue at one nodal point andvalue at other nodal point
Option A:	unity, negative
Option B:	positive, negative
Option C:	unity, zero
Option D:	high, low
Q11.	The nature of loading at various locations and other surfaces conditions called
Option A:	boundary condition
Option B:	traction
Option C:	friction
Option D:	surfacing
Q12.	Axis-Symmetric element isElement
Option A:	1D
Option A: Option B:	1D 2D
-	
Option B:	2D
Option B: Option C:	2D 3D

Option A:	Discrete element
Option B:	finite element
Option C:	assembled element
Option D:	Infinite element
•	
Q14.	Sum of all shape functions is equal to
Option A:	Zero
Option B:	-1
Option C:	+1
Option D:	2
Q15.	Which of the following can be used to identify distinct nodes
Option A:	Change of Geometry
Option B:	Change of color
Option C:	Change of resistance
Option D:	No change
Q16.	Which of the following is associated with the value of weight function in Petrov
	Galerkin Method to solve for the numerical solution of a differential equation
Option A:	Any algebraic polynomial
Option B:	Any quadratic polynomial
Option C:	Any differential polynomial
Option D:	Any parabolic polynomial
Q17.	If the number of nodes used for defining the geometry is more than the
	number of nodes used for defining the displacements, then it is known
Option A:	Sub Parametric elements
Option B:	Iso Parametric elements
Option C:	Super Parametric elements
Option D:	Meta Parametric Elements
010	
Q18.	The element we take a second on the second second second and second and second second second second second second
	The element matrix equation for analysis of a bar under axial loading is given
Ontion A:	by
Option A:	by
Option A:	
	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix}} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$
Option A: Option B:	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix}} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$
	by
Option B:	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix}} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$ $\frac{EA}{h_e} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$
	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix}} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$ $\frac{EA}{h_e} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$
Option B:	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix}} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$ $\frac{EA}{h_e} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$
Option B: Option C:	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$ $\frac{EA}{h_e} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$ $\frac{EA}{h_e} \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$
Option B:	$\begin{aligned} \mathbf{by} \\ \frac{EA}{h_e} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e \\ u_2^e \end{bmatrix} &= \begin{bmatrix} P_1^e \\ P_2^e \end{bmatrix} \\ \frac{EA}{h_e} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e \\ u_2^e \end{bmatrix} &= \begin{bmatrix} P_1^e \\ P_2^e \end{bmatrix} \\ \frac{EA}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1^e \\ u_2^e \end{bmatrix} &= \begin{bmatrix} P_1^e \\ P_2^e \end{bmatrix} \\ \frac{EA}{h_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1^e \\ u_2^e \end{bmatrix} &= \begin{bmatrix} P_1^e \\ P_2^e \end{bmatrix} \end{aligned}$
Option B: Option C:	$\frac{b\mathbf{y}}{\frac{EA}{h_e} \begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}}$ $\frac{EA}{h_e} \begin{bmatrix} -1 & 1\\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$ $\frac{EA}{h_e} \begin{bmatrix} 1 & -1\\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1^e\\ u_2^e \end{bmatrix} = \begin{bmatrix} P_1^e\\ P_2^e \end{bmatrix}$

Q19.	Which of the following best describes a beam element in Finite Element Analysis
Option A:	Members supported at one end and is subjected to transverse loading
Option B:	Members supported at one or both the ends or in between and are subjected to axial loading
Option C:	Members supported at one or both the ends or in between and is subjected to transverse loading
Option D:	Members supported at one or both the ends and are subjected to no loading
Q20.	In one of the property of shape function, summation of shape function is
Option A:	n
Option B:	2n
Option C:	1
Option D:	0
Q21.	In case of a truss member if there are 3 nodes and each node 2 DOF, then the order of Stiffness matrix is
Option A:	2x2
Option B:	3x3
Option C:	2x3
Option D:	6x6
•••••••	
Q22.	Which of the following is true for plane strain conditions
Option A:	Opted when the thickness is very less as compared to the size of the domain
Option B:	Opted when the thickness is very large as compared to the size of the domain
Option C:	Never opted when the thickness is very less as compared to the size of the domain
Option D:	Never opted when the thickness is very large as compared to the size of the domain
Q23.	The governing equation for free transverse vibration of a beam is given by
Option A:	$EI\frac{\partial^4 v}{\partial x^4} + \rho A\frac{\partial^2 v}{\partial t^2} = 0$
Option B:	$EA\frac{\partial^4 v}{\partial x^4} + \rho A\frac{\partial^2 v}{\partial t^2} = 0$
Option C:	$MC\frac{\partial^4 v}{\partial x^4} + \rho A\frac{\partial^2 v}{\partial t^2} = 0$
Option D:	Governing Differential Equation does not exist
Q24.	Which of the following denotes shape function of a rectangular element with four nodes at the vertices

Option A:	$\left[1 - \frac{\overline{2x}}{l}\right] \left[1 - \overline{2\frac{y}{h}}\right], \frac{\overline{x}}{l} \left[1 - \frac{\overline{2y}}{h}\right], \frac{\overline{xy}}{\overline{lh}}, \frac{\overline{y}}{\overline{h}} \left(1 - \overline{\frac{x}{l}}\right)$
Option B:	$\left[1 - \frac{\overline{x}}{\overline{l}}\right] \left[1 - \frac{\overline{y}}{\overline{h}}\right], \frac{\overline{x}}{\overline{l}} \left[1 - \frac{\overline{y}}{\overline{h}}\right], \frac{\overline{xy}}{\overline{lh}}, \frac{\overline{y}}{\overline{h}} \left(1 - \frac{\overline{x}}{\overline{l}}\right)$
Option C:	$\left[1 - \frac{2x}{h}\right] \left[1 - \overline{2\frac{y}{h}}\right], \frac{\overline{x}}{h} \left[1 - \frac{2y}{h}\right], \frac{\overline{xy}}{h}, \frac{\overline{y}}{h} \left(1 - \frac{\overline{x}}{l}\right)$
Option D:	Shape function of a rectangular element does not exist
Q25.	The rows of pascals triangle for the generation of the family of the triangular elements.
Option A:	Lagrange
Option B:	Hermite
Option C:	polynomial
Option D:	cubic polynomial