University of Mumbai Examination 2020- Inter Cluster

Program: BE Instrumentation Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code and Course Name: ISC503 : Control System Design

Time: 1hour

Max. Marks: 50

Note to the students:- All Questions are compulsory and carry equal marks .

Q1.	The value of dominant pole S_d is given by
Option A:	$S_d = -\xi \omega_n \pm j \omega_n \sqrt{(1-\xi^2)}$
Option B:	$S_d = -\xi^2 \omega_n^2 \pm j \omega_n^2 \sqrt{(1-\xi^2)}$
Option C:	$S_d = -\sqrt{\xi\omega_n} \pm j\omega_n \sqrt{(1-\xi^2)}$
Option D:	$S_{d} = -\xi^{4} \omega_{n}^{4} \pm j \omega_{n}^{4} \sqrt{(1-\xi^{2})}$
Q2.	The Lead-compensator has a
Option A:	Zero nearer to the origin
Option B:	Pole nearer to the origin
Option C:	Pole at the origin
Option D:	Zero at the origin
Q3.	Performance of a control system can be described in terms of
Option A:	Time-domain performance measures and not frequency-domain performance measures
Option B:	Frequency-domain performance measures and not time-domain performance measures
Option C:	Time-domain performance measures or frequency-domain performance measures
Option D:	Only time-domain performance measures.
Q4.	The Lag-compensator has a
Option A:	Zero nearer to the origin
Option B:	Pole nearer to the origin
Option D:	Pole at the origin
Option D:	Zero at the origin
Sphon D.	
Q5.	In frequency response approach, compensation network is used to alter and reshape the system's characteristics represented on an
Option A:	S-plane
Option B:	Root locus diagram
Option C:	Polar graph

University of Mumbai

Examination 2020- Inter Cluster

Option D:	Bode plot
Q6.	The minimum number of states require to describe the second order differential
Q 0.	equation is:
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q7.	Given the matrix
	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$
	the Eigen values are
Option A:	1
Option B:	1, 2, 3
Option C:	0
Option D:	-1, -2, -3
- <u>r</u>	
Q8.	For a system with the transfer function
	$H(s) = \frac{s^3 + 8s^2 + 17s + 9}{s^3 + 6s^2 + 11s + 6}$
	The state model in the 1 st companion form is given by the matrices,
Option A:	$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 9 & 17 & 8 \end{bmatrix}$
	$A = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $C = \begin{bmatrix} 9 & 17 & 8 \end{bmatrix}$
	L-6 -11 $-6J$ $L0J$
Option B:	[0 0 1] [0]
option D.	$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -6 & -11 & -6 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 8 & 17 & 9 \end{bmatrix}$
	$\begin{bmatrix} -6 & -11 & -6 \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$
Option C:	$A = \begin{bmatrix} 0 & 1 & 0 \\ -6 & -11 & -6 \end{bmatrix} \qquad B = \begin{bmatrix} 8 & 17 & 8 \end{bmatrix} \qquad C = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	$\begin{bmatrix} A - \begin{bmatrix} -0 & -11 & -0 \\ 0 & 0 & 1 \end{bmatrix} \qquad D - \begin{bmatrix} 0 & 17 & 0 \end{bmatrix} \qquad C - \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Option D:	
1	
	$ \begin{array}{c} A = \begin{bmatrix} -6 & -11 & -6 \\ 0 & 0 & 1 \end{bmatrix} & B = \begin{bmatrix} 8 & 17 & 8 \end{bmatrix} & C = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} & B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} & C = \begin{bmatrix} 9 & 17 & 8 \end{bmatrix} \\ \end{array} $
Q9.	The state diagram of the system is shown in figure. A system is described by
×2.	state variable equations: $\dot{x} = Ax + Bu$ and $y = Cx + Du$
	state variable equations: $x = Mx + Du$ and $y = 0x + Du$
	" <u>o o o o o o o o</u>
	$\frac{1}{\alpha}$ $\frac{1}{\alpha}$
	So, the state variable equations of the system given in figure are given by,
Option A:	
option / 1.	$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$

University of Mumbai Examination 2020- Inter Cluster

	$\mathbf{y} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \mathbf{u}$
Option B:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} u$
Ĩ	$\begin{bmatrix} x_2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix} + \begin{bmatrix} -1 \end{bmatrix}^u$
	$\mathbf{y} = \begin{bmatrix} -11 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \mathbf{u}$
Option C:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
	$\begin{bmatrix} x_2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix}^{\alpha}$
	$\mathbf{y} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mathbf{u}$
Option D:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
	$\mathbf{y} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mathbf{u}$
	$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix}$
Q10.	Which of the following is correct with respect to the properties of the state
	transition matrix, $\phi(t)$?
Option A:	It is never singular
Option B:	It is non-continuous
Option C:	It does not have continuous derivatives
Option D:	$ \emptyset(t,t) = -I for \ all \ t $
- F	
Q11.	The system is said to be completely if every state $x(t_0)$ can be
Q11.	determined from the observation of $y(t)$ over a finite time interval.
Option A:	Controllable
-	
Option B:	Observable
Option C:	Cannot be determined
Option D:	Controllable and observable
Q12.	For the system, $\dot{x} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \end{bmatrix} u$; which of the following statements is
	true?
Option A:	The system is controllable but unstable
Option B:	The system is uncontrollable and unstable
Option C:	The system is uncontrollable and stable
Option D:	The system is controllable and stable
Q13.	Consider the systems given by
	System 1: - $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x$; $y = \begin{bmatrix} 1 & 3 \end{bmatrix} x$
	System 2: $-\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x$; $y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$
Option A:	System 1 & system 2 both are observable

University of Mumbai

Examination 2020- Inter Cluster

Option B:	System 1 is not completely state observable but System 2 is completely state observable
Option C:	System 1 is completely state observable but System 2 is not completely state observable
Option D:	System 1 & system 2 both are not observable
Q14.	The system is represented by $\dot{x} = Ax + Bu$ where $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & -4 & 3 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ And desired poles are $s = -10, s = -2 \pm j4$ Find state feedback gain matrix K as $u = -Kx$.
Option A:	$K = [199 \ 55 \ 8]$
Option B:	$K = \begin{bmatrix} 1 & -6 & 31 \end{bmatrix}$
Option C:	System is not controllable so system cannot be stabilized by any K using state feedback control.
Option D:	System is not observable so system cannot be stabilized by any K using state feedback control.
Q15.	Transformation Approach to Obtain State Observer Gain Matrix Ke is given as
Option A:	$K_{e} = \begin{pmatrix} \begin{bmatrix} a_{n-1} & a_{n-2} \dots a_{1} & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{1} & 1 \dots & 0 & 0 \\ & & & & & & \\ \end{bmatrix} \begin{bmatrix} C^{*} A^{*}C^{*} \dots (A^{*})^{n-1}C^{*} \end{bmatrix} \begin{pmatrix} a_{n} - a_{n} \\ a_{n-1} - a_{n-1} \\ \vdots \\ a_{1} - a_{1} \end{bmatrix}$
Option B:	$\begin{aligned} & \text{Transformation Approach to Obtain State Observer Gain Matrix Ke is given as} \\ & K_e = \left(\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_1 & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_1 & 1 \dots & 0 & 0 \\ 1 & 0 & \dots 0 & 0 \end{bmatrix} \begin{bmatrix} C^* A^*C^* \dots (A^*)^{n-1}C^*] \\ \end{bmatrix} \right) \begin{bmatrix} \alpha_n - a_n \\ \alpha_{n-1} - a_{n-1} \\ \vdots \\ \alpha_1 - a_1 \end{bmatrix} \\ & K_e = \left(\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_1 & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_1 & 1 \dots & 0 & 0 \\ 1 & 0 & \dots 0 & 0 \end{bmatrix} \begin{bmatrix} C^* A^*C^* \dots (A^*)^{n-1}C^*] \\ \end{bmatrix} \right)^{-1} \begin{bmatrix} \alpha_n - a_n \\ \alpha_{n-1} - a_{n-1} \\ \vdots \\ \alpha_1 - a_1 \end{bmatrix} \\ & (fa_{n-1} - a_{n-1}) \end{bmatrix} \end{aligned}$
Option C:	$K_{e} = \begin{bmatrix} \alpha_{n} - a_{n} \\ \vdots \\ \alpha_{1} - a_{1} \end{bmatrix} \left(\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_{1} & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{1} & 1 \dots & 0 & 0 \\ 1 & 0 & \dots 0 & 0 \end{bmatrix} \begin{bmatrix} C^{*} A^{*}C^{*} \dots (A^{*})^{n-1}C^{*}] \\ \end{bmatrix}^{-1}$ $K_{e} = \begin{bmatrix} \alpha_{n} - a_{n} \\ \vdots \\ \alpha_{1} - a_{1} \end{bmatrix} \left(\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_{1} & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{1} & 1 \dots & 0 & 0 \\ 1 & 0 & \dots 0 & 0 \end{bmatrix} \begin{bmatrix} C^{*} A^{*}C^{*} \dots (A^{*})^{n-1}C^{*}] \\ \end{bmatrix}^{-1}$
Option D:	$K_{e} = \boxed{\begin{bmatrix} \alpha_{n} - a_{n} \\ \alpha_{n-1} - a_{n-1} \\ \vdots \\ \alpha_{1} - a_{1} \end{bmatrix}} \left(\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_{1} & 1 \\ a_{n-2} & a_{n-3} \dots 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{1} & 1 \dots & 0 & 0 \\ 1 & 0 & \dots 0 & 0 \end{bmatrix} \begin{bmatrix} C^{*} A^{*}C^{*} \dots (A^{*})^{n-1}C^{*}] \\ \end{bmatrix} \right)$
Q16.	The compensator $G(s) = \frac{5(1+0.3s)}{(1+0.1s)}$ would provide a maximum phase shift of:
Option A:	20 ⁰
Option B:	45 ⁰
Option C:	60°
Option D:	30 ⁰
Sphon D.	
Q17.	Bode plot are preferred for compensation when the specifications are in terms of and

University of Mumbai

Examination 2020- Inter Cluster

Option A:	phase margin, settling time
Option B:	phase margin, bandwidth
Option C:	phase margin, maximum overshoot
Option D:	Resonant peak, bandwidth
Q18.	In a frequency domain design of a lead compensator, the alpha parameter is calculated as
	-
Option A:	$\alpha = \frac{1 - \sin \phi_m}{1 + \sin \phi_m}$
Option B:	$\alpha = \frac{1 + \sin\phi_m}{1 + \sin\phi_m}$
Option C:	$\alpha = (1 + \sin\phi_m)/(1 - \sin\phi_m)$
Option D:	$\alpha = (1 - \sin \phi_m)/(1 - \sin \phi_m)$
Q19.	Derivative error compensation:
Option A:	Improvement in transient response
Option B:	Reduction in steady state error
Option C:	Reduction is settling time
Option D:	Increase in damping constant
Q20.	According to Ziegler-Nichols second method of tuning of PID controller -
Option A:	$K_P = 0.16Kcr, T_I = 0.05Pcr, T_D = 0.125Pcr$
Option B:	$K_P = 0.6Kcr, T_I = 0.55Pcr, T_D = 0.0125Pcr$
Option C:	$K_P = 0.6Kcr, T_I = 0.5Pcr, T_D = 0.125Pcr$
Option D:	$K_P = 0.65 Kcr, T_I = 0.05 Pcr, T_D = 0.125 Pcr$
Q21.	(-1, 0) (2)
	$ \underset{\text{If}}{\overset{x}{=}} \begin{pmatrix} -1 & 0\\ 0 & -2 \end{pmatrix} x \underset{\text{and}}{\overset{x}{=}} x(0) = \begin{pmatrix} 2\\ 1 \end{pmatrix}, $
	then which one of the following is the solution $x(t)$?
Option A:	$x(t) = \begin{pmatrix} 2e^{-t} \end{pmatrix}$
	$\left(e^{-2t}\right)$
Option B:	$\begin{aligned} x(t) &= \begin{pmatrix} 2e^{-t} \\ e^{-2t} \end{pmatrix} \\ x(t) &= \begin{pmatrix} e^{-t} \\ 2e^{-2t} \end{pmatrix} \end{aligned}$
	$x(t) = \begin{pmatrix} 2e^{-2t} \end{pmatrix}$
Option C:	$(2e^{-2t})$
1	$x(t) = \begin{pmatrix} 20 \\ a^{-t} \end{pmatrix}$
Option D:	$\begin{aligned} x(t) &= \begin{pmatrix} 2e^{-2t} \\ e^{-t} \end{pmatrix} \\ x(t) &= \begin{pmatrix} e^{-2t} \\ e^{-t} \end{pmatrix} \\ x(t) &= \begin{pmatrix} e^{-2t} \\ e^{-t} \end{pmatrix} \end{aligned}$
Option D.	$x(t) = \begin{pmatrix} e^{-t} \\ -t \end{pmatrix}$
	$\langle e^{-i} \rangle$
022	(0) = 0
Q22.	If $\dot{x} = \alpha x + \beta u_{\text{with}} x(0) = x_0$
	then which one of the following is the solution $x(t)$?
Option A:	$a_{t}(t) = a_{t}^{\alpha} a_{t}(t-t) a_{t}(t-t) d_{t}(t-t) d_{t}$
	$x(t) = e^{\alpha \tau} x_0 + \left[e^{\alpha \tau} r^{\beta} \mu(\tau) d\tau \right]$
Option B:	\int_{0}^{t}
option D.	$x(t) = e^{\alpha t} x_0 + \left e^{\beta(t-\tau)} \alpha u(\tau) d\tau \right $
Option C:	$\begin{aligned} x(t) &= e^{\alpha t} x_0 + \int_0^t e^{\alpha (t-\tau)} \beta u(\tau) d\tau \\ x(t) &= e^{\alpha t} x_0 + \int_0^t e^{\beta (t-\tau)} \alpha u(\tau) d\tau \\ x(t) &= e^{\beta t} x_0 + \int_0^t e^{\beta (t-\tau)} \alpha u(\tau) d\tau \end{aligned}$
	$\begin{bmatrix} x(t) - c & x_0 + \end{bmatrix}_0^{-c} uu(t)ut$
<u> </u>	- <u>M</u>

University of Mumbai Examination 2020- Inter Cluster

Option D:	$f(t) = -\beta^{\alpha}(t-\tau) + \int_{-\infty}^{t} \beta^{\alpha}(t-\tau) + (-\tau) d\tau$
	$x(t) = e^{\alpha t} x_0 + \int_0^t e^{\beta(t-\tau)} u(\tau) d\tau$
Q23.	$\mathbf{r}_{\mathbf{k}} = \mathbf{r}_{\mathbf{k}} + $
Q23.	If k is the dc gain of the system and r is the ratio of time constant τ and time delay θ , then Cohen-Coon tuning parameters k_p , τ_i and τ_d for PID controller are
Option A:	b, then cohen-cool tuning parameters p , r and r for PID controller are
	$k_{p} = \frac{r\left(1.33 + \frac{1}{4r}\right)}{k}, \tau_{i} = \frac{40}{11 + \frac{2}{r}}, \tau_{d} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}$ $k_{p} = \frac{r\left(1.33 + \frac{1}{4r}\right)}{k}, \tau_{i} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}, \tau_{d} = \frac{40}{11 + \frac{2}{r}}$ $k_{p} = \frac{k\left(1.33 + \frac{1}{4r}\right)}{r}, \tau_{i} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}, \tau_{d} = \frac{40}{11 + \frac{2}{r}}$
Option B:	$\theta\left(32+\frac{6}{r}\right) \qquad \theta\left(32+\frac{6}{r}\right) \qquad 40$
	$k_{p} = \frac{r\left(\frac{1.55 + \frac{1}{4r}}{k}\right)}{k}, \tau_{i} = \frac{(1.55 + \frac{1}{4r})}{13 + \frac{8}{r}} \text{ and } \tau_{d} = \frac{40}{11 + \frac{2}{r}}$
Option C:	$k\left(133+\frac{1}{r}\right) \qquad \theta\left(32+\frac{6}{r}\right) \qquad 40$
	$k_p = \frac{\kappa \left(\frac{1.53 + \frac{1}{4r}}{r}\right)}{r}, \tau_i = \frac{1}{13 + \frac{8}{r}} \text{and} \tau_d = \frac{1}{11 + \frac{2}{r}}$
Option D:	$k_{p} = \frac{k\left(1.33 + \frac{1}{4r}\right)}{r}, \tau_{i} = \frac{40}{11 + \frac{2}{r}}, \text{ and } \tau_{d} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}$
	$k_p = \frac{\pi (1.55 + 4r)}{r_i} \tau_i = \frac{1}{11 + \frac{2}{r_i}} \tau_d = \frac{1}{13 + \frac{8}{r_i}}$
	r, r and r
Q24.	$ke^{-\theta s}$
	If system is a first order delay process $\tau s + 1$, then Ziegler-Nichols tuning
	parameters k_p and τ_i for PI controller are
Option A:	$k_p = \frac{0.90}{k\tau} \text{ and } \tau_i = \frac{0}{3.33}$
Option B:	II MH
Ontion C:	$k_p = \frac{0.97}{k\tau} \text{ and } \tau_i = 3.33\theta$
Option C:	$k_p = \frac{0.97}{k\theta}$ and $\tau_i = 3.33\theta$
Option D:	$k = \frac{0.9\tau}{\tau}$ $\tau = \frac{\theta}{\tau}$
	$k\theta$ and i 3.33
Q25.	$ke^{-\theta s}$
	If system is a first order delay process $\overline{\tau s + 1}$, then Ziegler-Nichols tuning
	parameters k_p , τ_i and τ_d for PID controller are
Option A:	$k_p = \frac{2\tau}{k\theta}$, $\tau_i = 0.5\theta$ and $\tau_i = 1.2\theta$
Option B:	$k_p = \frac{2\tau}{k\theta}, \ \tau_i = 1.2\theta \text{ and } \tau_i = 0.5\theta$ $k_p = \frac{1.2\tau}{k\theta}$
Option C:	$k_{p} = \frac{1.2\tau}{k\theta}, \tau_{i} = 0.5\theta \text{ and } \tau_{i} = 2\theta$ $k_{i} = \frac{1.2\tau}{k\theta}$
Option D:	$k_p = \frac{1.2\tau}{k\theta}$, $\tau_i = 2\theta$ and $\tau_i = 0.5\theta$