University of Mumbai Examination 2020- Inter Cluster

Program: BE Instrumentation Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: ISC503 and Course Name: Control System Design

Time: 1hour

Max. Marks: 50

Q1.	The value of dominant pole S_d is given by
Option A:	$S_d = -\xi \omega_n \pm j \omega_n \sqrt{(1 - \xi^2)}$
Option B:	$S_d = -\xi^2 \omega_n^2 \pm j \omega_n^2 \sqrt{(1-\xi^2)}$
Option C:	$S_d = -\sqrt{\xi\omega_n} \pm j\omega_n \sqrt{(1-\xi^2)}$
Option D:	$S_d = -\xi^4 \omega_n^4 \pm j \omega_n^4 \sqrt{(1-\xi^2)}$
Q2.	The Lead-compensator has a
Option A:	Zero nearer to the origin
Option B:	Pole nearer to the origin
Option C:	Pole at the origin
Option D:	Zero at the origin
Q3.	Performance of a control system can be described in terms of
Option A:	Time-domain performance measures and not frequency-domain performance measures
Option B:	Frequency-domain performance measures and not time-domain performance measures
Option C:	Time-domain performance measures or frequency-domain performance measures
Option D:	Only time-domain performance measures.
Q4.	The Lag-compensator has a
Option A:	Zero nearer to the origin
Option B:	Pole nearer to the origin
Option C:	Pole at the origin
Option D:	Zero at the origin
Q5.	In frequency response approach, compensation network is used to alter and
	reshape the system's characteristics represented on an
Option A:	S-plane
Option B:	Root locus diagram
Option C:	Polar graph

Note to the students:- All Questions are compulsory and carry equal marks .

University of Mumbai

Examination 2020- Inter Cluster

Option D:	Bode plot
Q6.	The minimum number of states require to describe the second order differential
	equation is:
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q7.	Given the matrix
	L=0 -11 -0
Option A:	1
Option B:	1 2 3
Option C:	0
Option D:	-123
Q8.	For a system with the transfer function
	$s^3 + 8s^2 + 17s + 9$
	$H(s) = \frac{1}{s^3 + 6s^2 + 11s + 6}$
	The state model in the 1 st companion form is given by the matrices,
Option A:	
-	$A = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 0 \end{bmatrix}$ $C = \begin{bmatrix} 9 & 17 & 8 \end{bmatrix}$
	$\begin{bmatrix} l-6 & -11 & -6 \end{bmatrix}$ $\begin{bmatrix} l0 \end{bmatrix}$
Option B:	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ R = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ C = \begin{bmatrix} 0 \\ 17 \\ 0 \end{bmatrix}$
	$\begin{bmatrix} A - & 0 & 1 & 0 \\ -6 & -11 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -6 \\ 1 \end{bmatrix}$
Option C:	
	A = -6 -11 -6 $B = [8 17 8]$ $C = 0 $
Option D:	$\begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{bmatrix} 0 \\ B - 0 \end{bmatrix} = \begin{bmatrix} 0 \\ C - \begin{bmatrix} 0 & 17 & 0 \end{bmatrix}$
	$\begin{bmatrix} A - 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$ $D = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 9 & 17 & 0 \end{bmatrix}$
Q9.	The state diagram of the system is shown in figure. A system is described by
	state variable equations: $\dot{x} = Ax + Bu$ and $y = Cx + Du$
	$\frac{1}{e}$ $\frac{1}{e}$
	So, the state variable equations of the system given in figure are given by
Option A:	$\begin{bmatrix} \dot{x_1} \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$
	$\left \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 \\ -1 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$

University of Mumbai Examination 2020- Inter Cluster

	$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ y \end{bmatrix} + u$
Option B:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix} u$
	$[x_2]$ $[x_1]$
	$\mathbf{y} = \begin{bmatrix} -11 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \mathbf{u}$
Option C:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
	$\mathbf{y} = \begin{bmatrix} -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mathbf{u}$
Option D:	$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} u$
	$\mathbf{y} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \mathbf{u}$
Q10.	Which of the following is correct with respect to the properties of the state transition matrix $\mathcal{O}(t)$?
Option A:	transition matrix, $\varphi(t)$?
Option R:	It is non-continuous
Option C:	It does not have continuous derivatives
Option D:	$d(t,t) = \int f_{org} dt t$
Option D.	$\varphi(t,t) = -1 \text{for all } t$
Q11.	The system is said to be completely if every state $x(t_0)$ can be determined from the observation of $y(t)$ over a finite time interval.
Option A:	Controllable
Option B:	Observable
Option C:	Cannot be determined
Option D:	Controllable and observable
1	
Q12.	For the system, $\dot{x} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 3 \\ 1 \end{bmatrix} u$; which of the following statements is true?
Option A:	The system is controllable but unstable
Option B:	The system is uncontrollable and unstable
Option C:	The system is uncontrollable and stable
Option D:	The system is controllable and stable
1	
Q13.	Consider the systems given by
	System 1: - $\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x$; $y = \begin{bmatrix} 1 & 3 \end{bmatrix} x$
	System 2: $-\dot{x} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} x$; $y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$
Option A:	System 1 & system 2 both are observable

University of Mumbai

Examination 2020- Inter Cluster

Option B:	System 1 is not completely state observable but System 2 is completely state
	observable
Option C:	System 1 is completely state observable but System 2 is not completely state observable
Option D:	System 1 & system 2 both are not observable
Q14.	The system is represented by $\dot{x} = Ax + Bu$ where
	[1 2 1] [0]
	$A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}; B = \begin{bmatrix} 0 \end{bmatrix}$
	And desired poles are $s = -10$, $s = -2 \pm j4$
	Find state feedback gain matrix K as $u = -Kx$.
Option A:	K = [199 55 8]
Option B:	K = [1 - 6 31]
Option C:	System is not controllable so system cannot be stabilized by any K using state
Ortion Di	reedback control.
Option D:	System is not observable so system cannot be stabilized by any K using state
015	Transformation Approach to Obtain State Observer Gain Matrix Kais given as
Q_{13} .	$\frac{1}{\sqrt{\alpha_{n-1} - \alpha_{n-2} - \alpha_{i-1}}}$
Option A.	$\begin{bmatrix} a_{n-1} & a_{n-2} & \dots & a_1 & 1 \\ a_{n-2} & a_{n-2} & 1 & 0 \end{bmatrix} \begin{bmatrix} a_n - a_n \end{bmatrix}$
	$K_{a} = \begin{bmatrix} n & 2 & n & 3 & m & 1 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots & \begin{bmatrix} C^{*} & A^{*}C^{*} & \dots & (A^{*})^{n-1}C^{*} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \alpha_{n-1} - a_{n-1} \\ \vdots & \vdots & \dots & \vdots & \vdots \end{bmatrix}$
	$\begin{bmatrix} a_1 & 1 & \dots & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} \qquad \qquad$
Option B:	$\left[\begin{bmatrix} a_{n-1} & a_{n-2} \dots a_1 & 1 \end{bmatrix} \right]$
	$\begin{bmatrix} a_{n-2} & a_{n-3} \dots & 1 \end{bmatrix}$
	$K_e = \begin{bmatrix} 1 & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} C^* A^*C^* \dots (A^*)^{n-1}C^*] \end{bmatrix} \begin{bmatrix} a_{n-1} & a_{n-1} \\ \vdots & \vdots \end{bmatrix}$
	$\begin{vmatrix} a_1 & 1 & \dots & 0 \\ a_1 & -a_1 & \dots & -a_1 \end{vmatrix}$
Option C:	
Option C.	$\begin{bmatrix} \alpha_n - \alpha_n \end{bmatrix} / \begin{bmatrix} a_{n-1} & a_{n-2} \dots a_1 & 1 \\ a_n & a_n & 1 \end{bmatrix}$
	$ \begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $
	$ \begin{array}{c} \Lambda_{e} - \\ \vdots \\ \eta \\ \eta$
	$\begin{bmatrix} \alpha_1 - \alpha_1 \end{bmatrix} \begin{bmatrix} \alpha_1 & 1 \dots & 0 & 0 \\ 1 & 0 & \dots & 0 \end{bmatrix}$
Option D:	$\begin{bmatrix} a_{n-1} & a_{n-2} \dots & a_1 & 1 \end{bmatrix}$
	$\begin{bmatrix} a_n & a_n \\ a_{n-1} - a_{n-1} \end{bmatrix} \begin{bmatrix} a_{n-2} & a_{n-3} \dots 1 & 0 \end{bmatrix}$
	$K_e = \begin{bmatrix} 2^{n-1} & 2^{n-1} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \begin{bmatrix} C^* & A^*C^* \dots & (A^*)^{n-1}C^* \end{bmatrix} \end{bmatrix}$
	$\begin{vmatrix} \alpha_1 - \alpha_1 \end{vmatrix} \begin{vmatrix} a_1 & 1 \dots & 0 \end{vmatrix}$
016	The compensator $G(s) = 5(1+0.3s)/(1+0.1s)$ would provide a maximum phase shift of
Option A^{\cdot}	20°
Option B:	45°
Option C:	60^{0}
Option D:	30^{0}
<u> </u>	
Q17.	Bode plot are preferred for compensation when the specifications are in terms of
	and

University of Mumbai

Examination 2020- Inter Cluster

Option A:	phase margin, settling time
Option B:	phase margin, bandwidth
Option C:	phase margin, maximum overshoot
Option D:	Resonant peak, bandwidth
-	
Q18.	In a frequency domain design of a lead compensator, the alpha parameter is calculated as -
Option A:	$\alpha = (1 - \sin\phi_m)/(1 + \sin\phi_m)$
Option B:	$\alpha = (1 + \sin\phi_m)/(1 + \sin\phi_m)$
Option C:	$\alpha = (1 + \sin \phi_m)/(1 - \sin \phi_m)$
Option D:	$\alpha = (1 - \sin \phi_m)/(1 - \sin \phi_m)$
Q19.	Derivative error compensation:
Option A:	Improvement in transient response
Option B:	Reduction in steady state error
Option C:	Reduction is settling time
Option D:	Increase in damping constant
O20.	According to Ziegler-Nichols second method of tuning of PID controller –
Option A:	$K_P = 0.16Kcr, T_I = 0.05Pcr, T_D = 0.125Pcr$
Option B:	$K_P = 0.6Kcr, T_I = 0.55Pcr, T_D = 0.0125Pcr$
Option C:	$K_P = 0.6Kcr, T_I = 0.5Pcr, T_D = 0.125Pcr$
Option D:	$K_P = 0.65 Kcr, T_I = 0.05 Pcr, T_D = 0.125 Pcr$
F	
Q21.	$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix} x \text{ and } x(0) = \begin{pmatrix} 2 \\ 1 \end{pmatrix},$ then which one of the following is the solution $x(t)$?
Option A:	$x(t) = \begin{pmatrix} 2e^{-t} \\ e^{-2t} \end{pmatrix}$
Option B:	$x(t) = \begin{pmatrix} e^{-t} \\ 2e^{-2t} \end{pmatrix}$
Option C:	$x(t) = \begin{pmatrix} 2e^{-2t} \\ e^{-t} \end{pmatrix}$
Option D:	$x(t) = \begin{pmatrix} e^{-2t} \\ e^{-t} \end{pmatrix}$
Q22.	If $\dot{x} = \alpha x + \beta u_{\text{with}} x(0) = x_0$
	then which one of the following is the solution $x(t)$?
Option A:	$x(t) = e^{\alpha t} x_0 + \int_0^t e^{\alpha(t-\tau)} \beta u(\tau) d\tau$
Option B:	$x(t) = e^{\alpha t} x_0 + \int_0^t e^{\beta(t-\tau)} \alpha u(\tau) d\tau$
Option C:	$x(t) = e^{\beta t} x_0 + \int_0^t e^{\beta(t-\tau)} \alpha u(\tau) d\tau$

University of Mumbai Examination 2020- Inter Cluster

Option D:	$x(t) = e^{\alpha t} x_0 + \int_0^t e^{\beta(t-\tau)} u(\tau) d\tau$
	50
Q23.	If k is the dc gain of the system and r is the ratio of time constant τ and time delay θ , then Cohen-Coon tuning parameters k_p , τ_i and τ_d for PID controller are
Option A:	$k_{p} = \frac{r\left(1.33 + \frac{1}{4r}\right)}{k}, \tau_{i} = \frac{40}{11 + \frac{2}{r}} \text{and} \tau_{d} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}$
Option B:	$k_{p} = \frac{r\left(1.33 + \frac{1}{4r}\right)}{k}, \tau_{i} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}} \text{and} \tau_{d} = \frac{40}{11 + \frac{2}{r}}$
Option C:	$k_{p} = \frac{k\left(1.33 + \frac{1}{4r}\right)}{r}, \tau_{i} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}} \text{and} \tau_{d} = \frac{40}{11 + \frac{2}{r}}$
Option D:	$k_{p} = \frac{k\left(1.33 + \frac{1}{4r}\right)}{r}, \tau_{i} = \frac{40}{11 + \frac{2}{r}} \text{and} \tau_{d} = \frac{\theta\left(32 + \frac{6}{r}\right)}{13 + \frac{8}{r}}$
	t _As
Q24.	If system is a first order delay process $\frac{ke^{-\delta s}}{\tau s + 1}$, then Ziegler-Nichols tuning
Option A:	parameters \mathcal{A}_{p} and \mathcal{A}_{i} for PI controller are
Option A.	$k_p = \frac{3350}{k\tau}$ and $\tau_i = \frac{3}{3.33}$
Option B:	$k_p = \frac{0.9\theta}{k\tau}$ and $\tau_i = 3.33\theta$
Option C:	$k_p = \frac{0.9\tau}{k\theta}$ and $\tau_i = 3.33\theta$
Option D:	$k_p = \frac{0.9\tau}{k\theta}$ and $\tau_i = \frac{\theta}{3.33}$
025.	$ke^{- heta s}$
	If system is a first order delay process $\overline{\tau s + 1}$, then Ziegler-Nichols tuning parameters k_p , τ_i and τ_d for PID controller are
Option A:	$k_p = \frac{2\tau}{k\theta}$, $\tau_i = 0.5\theta$ and $\tau_i = 1.2\theta$
Option B:	$k_p = \frac{2\tau}{k\theta}$, $\tau_i = 1.2\theta$ and $\tau_i = 0.5\theta$
Option C:	$k_p = \frac{1.2\tau}{k\theta}$, $\tau_i = 0.5\theta$ and $\tau_i = 2\theta$
Option D:	$k_p = \frac{1.2\tau}{k\theta}$, $\tau_i = 2\theta$ and $\tau_i = 0.5\theta$