University of Mumbai

Program: Mechanical Engineering

Curriculum Scheme: R-16

Examination: BE(Mechanical) Course Code: MEDL07034 Time: 2 hour

Semester VIII Course Name: Computational Fluid Dynamics Max. Marks: 80

1. The general structure of CFD analysis consist of Option A: geometry, meshing, grid, solving Option B: pre-processing, solving, post processing Option C: domain geometry, meshing, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
1. The general structure of CFD analysis consist of Option A: geometry, meshing, grid, solving Option B: pre-processing, solving, post processing Option C: domain geometry, meshing, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
Option A: geometry, meshing, grid, solving Option B: pre-processing, solving, post processing Option C: domain geometry, meshing, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
Option R: geometry, meshing, grid, sorving Option B: pre-processing, solving, post processing Option C: domain geometry, meshing, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
Option D: pre processing, sorving, post processing Option C: domain geometry, meshing, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
Option C: domain geometry, meaning, grid, governing equation, boundary conditions, solution Option D: solving using governing differential equations 2. Discretization means
Option D: solving using governing differential equations 2. Discretization means
2. Discretization means
2. Discretization means
Option A: integration of governing equation over all control volumes
Option B: solution of algebric equation by iterative methods
Option C: conversion of resulting integral equation into system of algebric equation
Option D: generating valuable results from analysis
3. The conservation law of general flow variable is rate of increase of variable in
control volume with respect to time is
Option A: sum of increase of variable due to convection and source only
Option B: sum of increase of variable due to convection, diffusion only
Option C: sum of increase of variable due to convection, diffusion and source only
Option D: sum of increase of variable due to body force and surface force only
4. The sub-division of domain into a number of small, non-overlapping sub-domains
is called
Option A: Structure
Option B: Computational domain
Option C: Grid
Option D: Node
5. A matrix is said to be singular in which of the following cases?
Option A: Only if its determinant is zero
Option B: All elements in the matrix are zero
Option C: If it contains negative values
Option D: If its co-factor matrix is a null matrix
6 Tracking the motion and computing the rate of change of conserved property Ø for
fluid narticles is called
Option A: Eulerian Approach
Option B: Lagrangian Approach

Option C:	Newtonian approach		
Option D:	Stokes Approach		
7.	Method of weighted resudial is		
Option A:	Powerful method to solve differential equations		
Option B:	Powerful to solve the algebraic equations		
Option C:	Efficient as iterative method		
Option D:	Powerful to analyze the domain gemometry		
8.	In equation of general transport, terms need surface integral are		
Option A:	Rate of change and diffusion		
Option B:	Rate of change and source		
Option C:	Convection and diffusion		
Option D:	Convention and rate of change		
9.	Computational fluid dynamic results are wind tunnel results.		
Option A:	Better than		
Option B:	Analogous to		
Option C:	More reliable than		
Option D:	Energy consuming when compared to		
10	Startshad and a		
10.	Stretched grids are		
Option R:	Uniform grid along both coordinate axis and non-uniform along other		
Option C:	Curvilineer grid having curved grids		
Option D:	Boundary grids		
Option D.			
11	System of linear algebraic equations can be solved by which of the following		
11.	method		
Option A:	Gauss-elimination method		
Option B:	Differential method		
Option C:	Integral method		
Option D:	Linear algebra		
•			
12.	O-type grids are		
Option A:	Uniform grid		
Option B:	Structured grid		
Option C:	Curvilinear boundary grids		
Option D:	Stretched grids		
13.	In equation of general transport, terms need surface integral are		
Option A:	Rate of change and diffusion		
Option B:	Rate of change and source		
Option C:	Convection and diffusion		
Option D:	Convention and rate of change		
14.	Conservativeness is the fundamental property for discretization scheme represent		
Option A:	The flux \emptyset leaving the control volume across certain face must not be same as		
	entering to adjacent control volume.		

Option B:	The flux \emptyset leaving the control volume across certain face must be same as entering
1	to adjacent control volume.
Option C:	There exist various conservation equation at each control volume
Option D:	There is not existence of similarity of flux across adjacent control volume
15.	UPWIND Difference scheme is to overcome
Option A:	Inadquencies of bondedness
Option B:	Inadquencies of conservativeness
Option C:	Inadquencies of transportiveness
Option D:	Inadquencies of identifying flow direction in central differencing
16.	The three point upstream weighted quadratic interpolation for cell face values is
	sometimes referred as
Option A:	UPWIND Scheme
Option B:	QUICK scheme
Option C:	SIMPLE scheme
Option D:	SIMPLE-R scheme
17.	The hybrid differencing scheme is the combination of
Option A:	Forward differencing and central differencing
Option B:	Central differencing and backward differencing
Option C:	Central differencing and upwind differencing
Option D:	Forward differencing and upwind differencing
18.	The equating corelating pressure density and temperature is
Option A:	Navier stokes equation
Option B:	Momentum Equation
Option C:	Energy equation
Option D:	Equation Of States
19.	Pressure velocity coupling could be achieved by
Option A:	Using momentum equation along three coordinate axis
Option B:	Using Navier Stokes equation along three coordinate axis
Option C:	Using equation of state and continuity equation
Option D:	Using energy equation
20.	Which of the following can be considered as body forces that act on a fluid particle?
Option A:	Centrifugal force
Option B:	Coriolis force
Option C:	Electromagnetic force
Option D:	Gravitational force

Q2	Solve any Four out of Six.	5 marks each
А	Derive the continuity equation in three dimensions	
В	Explain the meaning and significance of relaxation technique soltion	es used in CFD
С	Discuss the ke-epsilon model used in turbulence modelling	
D	Explain the concept of meshing and mesh quality	
E	Give an account of errors in CFD	

F	What is QUICK? Give the distribution of flux ϕ (Phi)	at the face values of
1	a control volume	

Q3.	Solve any Two Questions.	10 marks each
A	 Consider a large plate of thickness t = 3 cm with an internal of 1200 kW/m3 and a constant thermal conductivity of 1.1 faces of the plate are maintained at 150 °C and 300 °C. As dimensions in the directions perpendicular to the thickness the temperature gradients due to conduction are significant of thickness only Write the one dimensional governing equation for the above the discretized equation for each node Arrange the equations in the matrix form and solve it to f state temperature at five equally spaced nodes using TDM. 	I heat generation W/mK. The ssume that the are so large that in the direction ove phenomena find the steady
В	A property ϕ is transported by means of convection and difference on the dimensional domain. The governing equation to be use ϕ) = d/dx (Γ d ϕ /dx). The boundary conditions to be 0, $\phi_0 = 1$ and at x = L, $\phi_L = 0$. Assume that the property is x= 0 to x = L. Using five equally spaced nodes and an Upv calculate the distribution of ϕ as a function of x for u = 0.1 $\rho = 1.1 \text{ kg/m}$, $\Gamma = 0.15 \text{ kg/ms}$	ffusion through a ed is d/dx (ρ u e used are at $x =$ transported from vind scheme, 5 m/s, L = 2.5 m,
С	A thin plate is initially at a uniform temperature of 300° C. t=0, the temperature of the east side of the plate is suddenl The other surface is insulated. Use the explicit method at seconds; calculate the transient temperature distribution of end of the first time step. The plate thickness is 30 mm; the is 20 W/mK and $\rho c = 10 \times 10^{6}$ J/m ³ K. The governing eq is $\rho c (\partial T/\partial t) = \partial/\partial x$ (K $\partial T /\partial x$).	At a certain time y reduced to 0° C. nd time step of 3 of the plate at the rmal conductivity uation to be used