Program: TE(Information Technology)

Curriculum Scheme: CBCGS

Examination: Third Year Semester V December 2020

Course Code: ITC305 Time: 2 hour Course Name: ADS&AOA Max. Marks: 80

Q1	MCQs 2 Marks each
1.	What is the running time of Strassen's algorithm for matrix multiplication?
Option A:	O(n^2.81)
Option B:	O(n^3)
Option C:	O(n^1.8)
Option D:	O(n^2)
2.	Give asymptotic upper bound for T(n) if the recurrence can be solved with the
	Master Theorem $T(n) = 4T(n/2) + \log n$
Option A:	$T(n) = \Theta(n^2)$
Option B:	$T(n) = \Theta(n \log n)$
Option C:	T (n) = Θ(n)
Option D:	Does not apply
3.	Which notation bounds a function from above and below and defines exact
	asymptotic behavior
Option A:	Theta
Option B:	Big O
Option C:	Omega
Option D:	All of the above
4.	What is an AVL tree?
Option A:	a tree which is balanced and is a height balanced tree
Option B:	a tree which is unbalanced and is a height balanced tree
Option C:	a tree with three children
Option D:	a tree with atmost 3 children
5.	2-3 tree is a specific form of
Option A:	B tree
Option B:	B+ tree
Option C:	AVL tree
Option D:	Неар
6.	In most of the cases, topological sort starts from a node which has
Option A:	Maximum Degree

Option B:	Minimum Degree	
Option C:	Any degree	
Option D:	Zero Degree	
7.	What is the running time of naïve matrix multiplication algorithm?	
Option A:	O(n^2.81)	
Option B:	O(n^4)	
Option C:	O(n)	
Option D:	O(n^3)	
8.	Fractional knapsack problem is solved most efficiently by which of the following	
	algorithm?	
Option A:	Divide and conquer	
Option B:	Dynamic programming	
Option C:	Greedy algorithm	
Option D:	Backtracking	
9.	Given items as {value,weight} pairs {{60,20},{50,25},{20,5}}. The capacity of	
	knapsack=40. Find the maximum value output assuming items to be divisible.	
Option A:	100	
Option B:	110	
Option C:	130	
Option D:	120	
10.	Longest common subsequence is an example of	
Option A:	Greedy algorithm	
Option B:	DP	
Option C:	Divide and conquer	
Option D:	Branch & Bound	
11.	What is a Rabin and Karp Algorithm?	
Option A:	String Matching Algorithm	
Option B:	Shortest Path Algorithm	
Option C:	Minimum spanning tree Algorithm	
Option D:	Approximation Algorithm	
12.	Floyd Warshall's Algorithm is used for solving	
Option A:	All pair shortest path problems	
Option B:	Single Source shortest path problems	
Option C:	Network flow problems	
Option D:	Sorting problems	
· · · · · · · · · · · · · · · · · · ·		
13.	What is the maximum height of an AVL tree with p nodes?	
Option A:	P	
Option B:	log(p)	
Option C	$\log(p)/2$	

Option D:	p/2		
14.	Which is not feasible solution in case of job sequence problem item: 1 2 3 4, profit: 100, 10,15,27, deadline: 2 1 2 1		
Option A:	(1,4)		
Option B:	(4,3)		
Option C:	(2.4)		
Option D:	(1,2)		
15.	Consider the strings "PQRSTPQRS" and "PRATPBRQRPS". What is the length of		
	the longest common subsequence?		
Option A:	9		
Option B:	8		
Option C:	7		
Option D:	6		
16.	You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack(0/1)?		
Option A:	160		
Option B:	200		
Option C:	170		
Option D:	90		
17.	What is the basic principle in Rabin Karp algorithm?		
Option A:	Hashing		
Option B:	Sorting		
Option C:	Augmenting		
Option D:	Dynamic Programming		
18.	You are given infinite coins of denominations 3, 5, 7. Which of the following sum		
	CANNOT be achieved using these coins?		
Option A:	15		
Option B:	16		
Option C:	17		
Option D:	4		
19.	In dynamic programming, the technique of storing the previously calculated values is called		
Option A:	Saving value property		
Option B:	Storing value property		
Option C:	Memoization		
Option D:	Mapping		
20.	Which of the following problems should be solved using dynamic programming?		
Option A:	Mergesort		

Option B:	Binary search
Option C:	Longest common subsequence
Option D:	Quicksort

Q2	Solve any 2 out of 3	(10 marks each)
А	Define AVL tree.Construct AVL tree for following data:	
	21,26,30,9,4,14,28,18,15,10,2,3,7	
В	What is optimal binary search tree? Explain with the help of	of example.
С	Construct B-Tree for following data:	
	8, 9, 10, 11, 15, 16, 17, 18, 20, 23.	

Q3	Solve any 2 out of 3 (10 marks ea	ich)
А	Solve the following numbers using quicksort. Also derive time complexity	y of quick
	sort.	
	27 10 36 18 25 45	
В	Apply All pairs shortest path on following graph	
С	What is Longest common sub sequence problem? Find LCS for following	string
	X= ACBAED	
	Y=ABCABE	