Program: TE(Information Technology)

Curriculum Scheme: CBCGS

Examination: Third Year Semester V December 2020

Course Code: ITC305
Time: $\mathbf{2}$ hour

Course Name: ADS\&AOA Max. Marks: 80

Q1	MCQs 2 Marks each
1.	What is the running time of Strassen's algorithm for matrix multiplication?
Option A:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 2.81\right)$
Option B:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
Option C:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 1.8\right)$
Option D:	$\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
2.	Give asymptotic upper bound for $T(n)$ if the recurrence can be solved with the Master Theorem $\quad T(n)=4 T(n / 2)+\log n$
Option A:	$\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{\wedge} 2\right)$
Option B:	$T(n)=\Theta(n \log n)$
Option C:	$\mathrm{T}(\mathrm{n})=\Theta(\mathrm{n})$
Option D:	Does not apply
3.	Which notation bounds a function from above and below and defines exact asymptotic behavior
Option A:	Theta
Option B:	Big 0
Option C:	Omega
Option D:	All of the above
4.	What is an AVL tree?
Option A:	a tree which is balanced and is a height balanced tree
Option B:	a tree which is unbalanced and is a height balanced tree
Option C:	a tree with three children
Option D:	a tree with atmost 3 children
5.	2-3 tree is a specific form of
Option A:	B tree
Option B:	B+ tree
Option C:	AVL tree
Option D:	Heap
6.	In most of the cases, topological sort starts from a node which has
Option A:	Maximum Degree

Option B:	Minimum Degree
Option C:	Any degree
Option D:	Zero Degree
7.	What is the running time of naïve matrix multiplication algorithm?
Option A:	O(n^2.81)
Option B:	O(n^4)
Option C:	O(n)
Option D:	O(n^3)
8.	Fractional knapsack problem is solved most efficiently by which of the following algorithm?
Option A:	Divide and conquer
Option B:	Dynamic programming
Option C:	Greedy algorithm
Option D:	Backtracking
9.	Given items as \{value,weight $\}$ knapsack=40. pind the maximum value output assuming items to be divisible. Option A:
100	
Option B:	110
Option C:	130
Option D:	120
10.	Longest common subsequence is an example of
Option A:	Greedy algorithm
Option B:	DP
Option C:	Divide and conquer
Option D:	Branch \& Bound
11.	What is a Rabin and Karp Algorithm?
Option A:	String Matching Algorithm
Option B:	Shortest Path Algorithm
Option C:	Minimum spanning tree Algorithm
Option D:	Approximation Algorithm
Option A:	P
Option B:	log(p)
Option C:	log(p)/2
Option A:	All pair shortest path problems
Option B:	Single Source shortest path problems
Option C:	Network flow problems
Option D:	Sorting problems
	What is the maximum height of an AVL tree with p nodes?

Option D:	$\mathrm{p} / 2$
14.	Which is not feasible solution in case of job sequence problem item: 123 4, profit: 100, 10,15,27, deadline: 2121
Option A:	$(1,4)$
Option B:	$(4,3)$
Option C:	$(2,4)$
Option D:	$(1,2)$
15.	Consider the strings "PQRSTPQRS" and "PRATPBRQRPS". What is the length of the longest common subsequence?
Option A:	9
Option B:	8
Option C:	7
Option D:	6
16.	You are given a knapsack that can carry a maximum weight of 60 . There are 4 items with weights $\{20,30,40,70\}$ and values $\{70,80,90,200\}$. What is the maximum value of the items you can carry using the knapsack(0/1)?
Option A:	160
Option B:	200
Option C:	170
Option D:	90
17.	What is the basic principle in Rabin Karp algorithm?
Option A:	Hashing
Option B:	Sorting
Option C:	Augmenting
Option D:	Dynamic Programming
18.	You are given infinite coins of denominations 3, 5, 7. Which of the following sum CANNOT be achieved using these coins?
Option A:	15
Option B:	16
Option C:	17
Option D:	4
19.	In dynamic programming, the technique of storing the previously calculated values is called \qquad
Option A:	Saving value property
Option B:	Storing value property
Option C:	Memoization
Option D:	Mapping
20.	Which of the following problems should be solved using dynamic programming?
Option A:	Mergesort

Option B:	Binary search
Option C:	Longest common subsequence
Option D:	Quicksort

Q2	Solve any 2 out of 3
A	Define AVL tree.Construct AVL tree for following data: $21,26,30,9,4,14,28,18,15,10,2,3,7$
B	What is optimal binary search tree? Explain with the help of example.
C	Construct B-Tree for following data: $8,9,10,11,15,16,17,18,20,23$.

Q3	Solve any $\mathbf{2}$ out of $\mathbf{3}$
A	Solve the following numbers using quicksort. Also derive time complexity of quick sort. $27 \quad 1036 \quad 18 \quad 25 \quad 45$
B	Apply All pairs shortest path on following graph
C	What is Longest common sub sequence problem? Find LCS for following string X=ACBAED Y=ABCABE

