Curriculum Scheme: Revised 2019

Examination: Second Year Semester III

Course Code and Course Name: Digital Electronics - ISC304
Time: 2hour
Max. Marks: 80

==1

Q1.	Solve the following
1	Simplify the given Boolean expression $\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{ABC}$ ' to minimum number of literals
Option A:	B
Option B:	1
Option C:	$\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}$
Option D:	A
2	$\mathrm{x}+\mathrm{yz}=(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z})$ is
Option A:	De Morgan's Theorem
Option B:	The associative law
Option C:	The commutative Law
Option D:	The distributive law
3.	How many entries will be there in the truth table of a 3 input NAND gate?
Option A:	3
Option B:	6
Option C:	9
Option D:	8
4	What is the Minterm equivalent of $\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
Option A:	$\sum(0,1)$
Option B:	$\sum(0,1,2)$
Option C:	$\sum(1,2)$
Option D:	$\sum(1,2,3)$
5	Which of the following expression is dual of $(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD}$
Option A:	$(\mathrm{AB}+\mathrm{CD})=(\mathrm{A}+\mathrm{C})(\mathrm{A}+\mathrm{D})(\mathrm{B}+\mathrm{C})(\mathrm{B}+\mathrm{D})$
Option B:	$(\mathrm{AC}+\mathrm{BD})=(\mathrm{A}+\mathrm{C})(\mathrm{A}+\mathrm{D})(\mathrm{B}+\mathrm{C})(\mathrm{B}+\mathrm{D})$
Option C:	$(\mathrm{AB}+\mathrm{CD})=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{D})(\mathrm{B}+\mathrm{C})(\mathrm{C}+\mathrm{D})$
Option D:	$(\mathrm{AD}+\mathrm{BC})=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})(\mathrm{B}+\mathrm{C})(\mathrm{B}+\mathrm{D})$
6	The following Boolean function equivalent to. $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,4,5,6)$
Option A:	$x y+z$ '

Option B:	z'
Option C:	z'+xy'
Option D:	xy
7	The following Boolean function equivalent to. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi(1,3,5,7,13$, 15)
Option A:	BD'+ACD'
Option B:	$\mathrm{BD}^{\prime}+\mathrm{ACD}^{\prime}+\mathrm{ABC}^{\prime} \mathrm{D}$
Option C:	$\left(\mathrm{B}+\mathrm{D}^{\prime}\right)\left(\mathrm{A}+\mathrm{C}+\mathrm{D}^{\prime}\right)$
Option D:	$\left(\mathrm{A}+\mathrm{D}^{\prime}\right)\left(\mathrm{B}^{\prime}+\mathrm{D}^{\prime}\right)$
8	For a logic family, given that V_{OH} is the minimum output high level voltage V_{OL} is the maximum output low level voltage V_{IH} is the minimum acceptable input high level voltage $\mathrm{V}_{\text {IL }}$ is the maximum acceptable input low level voltage Then correct relation ship is
Option A:	$\mathrm{V}_{\mathrm{IH}}>\mathrm{V}_{\mathrm{OH}}>\mathrm{V}_{\text {IL }}>\mathrm{V}_{\mathrm{OL}}$
Option B:	$\mathrm{V}_{\mathrm{OH}}>\mathrm{V}_{\text {IH }}>\mathrm{V}_{\text {IL }}>\mathrm{V}_{\text {OL }}$
Option C:	$\mathrm{V}_{\mathrm{OH}}>\mathrm{V}_{\mathrm{IH}}>\mathrm{V}_{\mathrm{OL}}>\mathrm{V}_{\text {IL }}$
Option D:	$\mathrm{V}_{\mathrm{OH}}<\mathrm{V}_{\mathrm{IH}}<\mathrm{V}_{\text {IL }}<\mathrm{V}_{\mathrm{OL}}$
9.	A full adder can be realized using
Option A:	one half adder, two AND gates
Option B:	two half adders, one OR gate
Option C:	two half adders, one AND gate
Option D:	two half adders, two AND gates
10	Which of the following is not a property of CMOS logic gates?
Option A:	High switching speed
Option B:	Low static power consumption
Option C:	High packing density
Option D:	High noise margin
11	The number of 2:1 multiplexers required to implement 8:1 multiplexer is
Option A:	6
Option B:	7
Option C:	8
Option D:	9
12	A RAM is
Option A:	Non-volatile memory
Option B:	Volatile memory
Option C:	Static and dynamic memory
Option D:	Volatile and either static or dynamic memory
13	How many address and data lines is there in $1 \mathrm{M} \times 16$ ROM system?
Option A:	20 and 4

Option B:	20 and 16	
Option C:	10 and 4	
Option D:	10 and 16	
14	What function is implemented at output Q of the following PAL structure? A B C D	
Option A:	$\mathrm{BD}+\mathrm{BC}+\mathrm{A}$	
Option B:	B + C	
Option C:	ABCD + A ${ }^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$	
Option D:	BC'	
15	A combinational logic circuit	
Option A:	must contain flip-flops	
Option B:	may contain flip-flops	
Option C:	does not contain flip-flops	
Option D:	contains latches	
16	The output Qn of a J-K flip-flop is 0 .Its output does not change when a clock pulse is applied. The inputs Jn and Kn are respectively.	
Option A:	X and 0	
Option B:	0 and 0	
Option C:	0 and X	
Option D:	1 and 1	
17	A binary ripple counter uses flip \square flops that trigger on the positive \square edge of the clock. What will be the count if the normal outputs of the flip \square flops are connected to the clock input of the next stage.	
Option A:	Down counter	
Option B:	BCD counter	
Option C:	Up counter	
Option D:	Gray code sequence generator	

18	The minimum number of flipflops required to design a mod10 ripple counter is
Option A:	10
Option B:	7
Option C:	4
Option D:	5
19	While converting a JK flip-flop to D flip-flop, instead of connecting an inverter between its J and K inputs, a buffer has been connected. The resulting circuit will act as
Option A:	JK flip flop only
Option B:	SR flip flop
Option C:	D flip flop
Option D:	T flip flop
20	(FFF.DA) ${ }_{16}$ is equivalent to (?) in binary
Option A:	110111011101.10011000
Option B:	111011101110.10101100
Option C:	11111111111.11011010
Option D:	101110111011.11001010

Q2 (20 Marks)	Solve any Four out of Six
A	Implement EX-OR by using NOR as universal
B	Design and implement full Subtractor.
C	Define specification of logic family
D	Design and implement MOD 4 counter
E	Write short note on PAL.
F	Differentiate between combinational and sequential logic

Q3. (20 Marks)	Solve any Two Questions out of Three	$\mathbf{1 0}$ marks each
A	Convert following equation into standard SOP form $1) \mathrm{AB}+\mathrm{ABC}+\mathrm{AC}$ $2) \mathrm{AC}+\mathrm{AD}+\mathrm{ACD}+\mathrm{ABC}$	
B	Design and implement BCD to excess-3 code converter.	

C	Design 4 bit Asynchronous up counter using JK flip flop

