University of Mumbai Examination 2020- Inter Cluster

Program: BE Instrumentation Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code and Course Name: ISC501 Signals and Systems

Time: 1hour Max. Marks: 80

Q.1] Choose the correct option for following questions. All Questions are compulsory and carry equal marks.

Marks 40

Q1.	Analog signal can be converted into discrete time signals by
Option A:	Sampling
Option B:	Quantization
Option C:	Coding
Option D:	Filtering
Q2.	The sum of two periodic signals is periodic only if the ratio of their respective periods T1/T2 is
Option A:	A rational number
Option B:	An irrational number
Option C:	A complex number
Option D:	A real number
•	
Q3.	The signal is an energy signal if
Option A:	E=0, P=0
Option B:	E=∞, P=finite
Option C:	E=finite, P=0
Option D:	E=finite, $P=\infty$
Q4.	The system whose output depends on future inputs is a
Option A:	Static system
Option B:	Dynamic system
Option C:	Non-causal system
Option D:	Dynamic and non-causal both
Q5.	y[n]=x[2n] is a
Option A:	Time-variant system
Option B:	Time varying, dynamic system
Option C:	Linear, time varying, dynamic system
Option D:	Linear, time invariant, static system
	•
Q6.	$x(t)=e^{-5t}u(t)$ is a
Option A:	Power signal

University of Mumbai Examination 2020- Inter Cluster

Option B:	Energy signal
Option C:	Neither power nor energy signal
Option D:	Both energy and power signal
1	
Q7.	δ (at) =
Option A:	δ (t)
Option B:	$ a \delta(t)$
Option C:	$1/ a \delta(t)$
Option D:	$\delta^2(t)$
Q8.	$\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau =$
Option A:	x(t)
Option B:	$\mathbf{x}(\tau)$
Option C:	$x(t)\delta(t)$
Option D:	$x(t-\tau)$
Q9.	If $x[n] = [1 \ 1 \ 2 \ -1]$ and $h[n] = [1 \ 0 \ 1]$, what would be the sequence $y[n]$ considering
	linear convolution?
Option A:	$Y[n] = [-1\ 2\ 0\ 3\ 1\ 1]$
Option B:	$Y[n] = [3 \ 1 \ 1 \ -1 \ 2 \ 0]$
Option C:	$Y[n] = [1 \ 1 \ 3 \ 0 \ 2 \ -1]$
Option D:	$Y[n] = [-1 -1 \ 3 \ 0 \ 2 \ 1]$
•	
Q10.	For the existence of Fourier series, Dirichlet's conditions are
Option A:	Necessary
Option B:	Sufficient
Option C:	Necessary and sufficient
Option D:	Necessary but not sufficient
•	
Q11.	The Exponential Fourier Series coefficient C _{-n} in terms of Trigonometric Fourier
	series coefficient is
Option A:	$C_{-n} = \frac{1}{2}(a_n + jb_n)$
Option B:	$C_{-n} = \frac{1}{2}(a_n - jb_n)$
Option C:	$C_{-n} = (a_n - jb_n)$
Option D:	$C_{-n} = (a_n + jb_n)$
-	
Q12.	Fourie Series applies to
Option A:	Only periodic signals
Option B:	Only aperiodic signals
Option C:	Both periodic and aperiodic signals
Option D:	Only random signals
Q13.	The Inverse Fourier Transform $x(t)$ of $X(\omega)$ is given by $\frac{1}{2}\pi$
Option A:	The Inverse Fourier Transform $x(t)$ of $X(\omega)$ is given by $\frac{1}{2}\pi$ $\int_{-\infty}^{\infty} X(\omega)e^{-i\omega t}d\omega$

University of Mumbai Examination 2020- Inter Cluster

Option B:	$\int_{-\infty}^{\infty} X(\omega)e^{i\omega t}d\omega$
Option C:	$\int_{-\infty}^{\infty} X(\omega)e^{i\omega t}d\omega$ $\int_{T/2}^{T/2} X(\omega)e^{-i\omega t}d\omega$ $\int_{-\infty}^{\infty} F(\omega)d\omega$
Option D:	$\int_{-\infty}^{\infty} F(\omega)d\omega$
014	The Fermina Transforms of v(A) is
Q14. Option A:	The Fourier Transform of $x(-t)$ is $X(\omega)$
Option B:	X(-\omega)
Option C:	$X(1/\omega)$
Option D:	$-X(\omega)$
орион В.	11(ω)
Q15.	The area under Fourier Transform, i.e., $\int_{-\infty}^{\infty} X(\omega)d\omega =$
Option A:	$\mathbf{x}(0)$
Option B:	X(0)
Option C:	$2 \pi x(0)$
Option D:	$\frac{1}{2} \pi x(0)$
•	
Q16.	Which one of the following cannot be the ROC of $\frac{5}{(s+3)(s+4)}$
Option A:	Re(s) > -3
Option B:	Re(s) < -4
Option C:	$-4 < \operatorname{Re}(s) < -3$
Option D:	-3 < Re(s) < -4
0.15	. 1
Q17.	$L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$ for ROC; -2 < Re(s) < -1 is
Option A:	$e^{-t}u(t) - e^{-2t}u(t)$
Option B:	$-e^{-t}u(-t) - e^{-2t}u(t)$
Option C:	$e^{-t} u(t) - e^{-2t} u(t)$ $-e^{-t} u(-t) - e^{-2t} u(t)$ $e^{-t} u(-t) - e^{-2t} u(-t)$
Option D:	$e^{-t}u(t) + e^{-2t}u(-t)$
Q18.	According to the time-shifting property of Laplace Transform, shifting the signal
,	in time domain corresponds to the
Option A:	Multiplication by e ^{-st0} in the time domain
Option B:	Multiplication by e ^{-st0} in the frequency domain
Option C:	Multiplication by e ^{st0} in the time domain
Option D:	Multiplication by e ^{st0} in the frequency domain
Q19.	When is the system said to be causal as well as stable in accordance to pole/zero of ROC specified by system transfer function?
Option A:	Only if all the poles of system transfer function lie in left-half of S-plane
Option B:	Only if all the poles of system transfer function lie in right-half of S-plane
Option C:	Only if all the poles of system transfer function lie at the center of S-plane
Option D:	It can be anywhere

University of Mumbai

Examination 2020- Inter Cluster

Q20.	The Z transform of a system is $H(z) = \frac{z}{z - 0.8}$. If the ROC is $ z < 0.8$, the impulse response of the system is
Option A:	$(0.8)^{n} u (n)$
Option B:	$-(0.8)^{n}$ u (-n-1)
Option C:	$-(0.8)^{n} u (n)$
Option D:	$(0.8)^{\rm n}$ u (-n-1)

Q.2	Solve any two. Marks 2	20
1	Find Inverse Laplace Transform for given ROC. (i) $X(s) = \frac{2s+1}{(s+2)(s-3)}$; Re{s}>3 (ii) $X(s) = \frac{s2+6s+7}{(s+2)(s-3)}$; Re{s}>3	
2	(i) Determine trigonometric Fourier series representation for the full wave rectified signal.	
3	Check whether following signals are power or energy or neither. Find energy and power of signals. (i) $x(t) = Ae^{-5t}u(t)$ (ii) $x(t) = A$ for all t	nd

Q.3	Solve any two. Marks 20
1	Solve the following difference equation using Z transform for n>=0
	x[n-2]-9x[n-1]+18x[n]=0
	when the initial conditions are $x[-1]=1$ and $x[-2]=9$
2	State and prove frequency shifting property of Fourier Transform. Hence find the
	Fourier Transform of e ^{jw0t}
3	Classify following systems for linearity, causality, time variency, stability and
	invertibility
	(i) y(t) = x(3t)
	$(ii) y[n] = x[n^2]$