University of Mumbai
 Examination 2020- Inter Cluster

Program: BE Instrumentation Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code and Course Name: ISC501 Signals and Systems
Time: 1hour
Max. Marks: 80
Q.1] Choose the correct option for following questions. All Questions are compulsory and carry equal marks. Marks 40

Q1.	Analog signal can be converted into discrete time signals by
Option A:	Sampling
Option B:	Quantization
Option C:	Coding
Option D:	Filtering
Q2.	The sum of two periodic signals is periodic only if the ratio of their respective periods T1/T2 is
Option A:	A rational number
Option B:	An irrational number
Option C:	A complex number
Option D:	A real number
Q3.	The signal is an energy signal if
Option A:	E=0, P=0
Option B:	E= $\infty, \mathrm{P}=$ finite
Option C:	E=finite, P=0
Option D:	E=finite, P=m
Q4.	The system whose output depends on future inputs is a
Option A:	Static system
Option B:	Dynamic system
Option C:	Non-causal system
Option D:	Dynamic and non-causal both
Q5.	y[n]=x[2n] is a
Option A:	Time-variant system
Option B:	Time varying, dynamic system
Option C:	Linear, time varying, dynamic system
Option D:	Linear, time invariant, static system
Q6.	$\mathrm{x}(\mathrm{t})=\mathrm{e}^{-5 t} \mathrm{u}(\mathrm{t})$ is a
Option A:	Power signal

University of Mumbai

Examination 2020- Inter Cluster

Option B:	Energy signal
Option C:	Neither power nor energy signal
Option D:	Both energy and power signal
Q7.	$\delta(\mathrm{at})=$
Option A:	δ (t)
Option B:	a δ (t)
Option C:	$1 /\|\mathrm{a}\| \delta(\mathrm{t})$
Option D:	$\delta^{2}(\mathrm{t})$
Q8.	$\int_{-\infty}^{\infty} \quad x(\tau) \delta(\mathrm{t}-\tau) \mathrm{d} \tau=$
Option A:	$\mathrm{x}(\mathrm{t})$
Option B:	$\mathrm{x}(\tau)$
Option C:	$\mathrm{x}(\mathrm{t}) \delta(\mathrm{t})$
Option D:	$\mathrm{x}(\mathrm{t}-\tau)$
Q9.	If $\mathrm{x}[\mathrm{n}]=\left[\begin{array}{lll}1 & 1 & 2\end{array}-1\right]$ and $\mathrm{h}[\mathrm{n}]=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$, what would be the sequence $\mathrm{y}[\mathrm{n}]$ considering linear convolution?
Option A:	$\mathrm{Y}[\mathrm{n}]=\left[\begin{array}{llllllll}-1 & 2 & 0 & 3 & 1 & 1\end{array}\right]$
Option B:	$\mathrm{Y}[\mathrm{n}]=\left[\begin{array}{lllllll}3 & 1 & 1 & -1 & 2 & 0\end{array}\right]$
Option C:	$\mathrm{Y}[\mathrm{n}]=\left[\begin{array}{llllllll}1 & 1 & 3 & 0 & 2 & -1\end{array}\right]$
Option D:	$\mathrm{Y}[\mathrm{n}]=\left[\begin{array}{lllllll}-1 & -1 & 3 & 0 & 2 & 1\end{array}\right]$
Q10.	For the existence of Fourier series, Dirichlet's conditions are
Option A:	Necessary
Option B:	Sufficient
Option C:	Necessary and sufficient
Option D:	Necessary but not sufficient
Q11.	The Exponential Fourier Series coefficient $\mathrm{C}_{-\mathrm{n}}$ in terms of Trigonometric Fourier series coefficient is
Option A:	$\mathrm{C}_{-\mathrm{n}}=1 / 2\left(\mathrm{a}_{\mathrm{n}}+\mathrm{j} \mathrm{b}_{\mathrm{n}}\right)$
Option B:	$\mathrm{C}_{-\mathrm{n}}=1 / 2\left(\mathrm{a}_{\mathrm{n}}-\mathrm{j} \mathrm{b}_{\mathrm{n}}\right)$
Option C:	$\mathrm{C}_{-\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}} \mathrm{j} \mathrm{j}_{\mathrm{n}}\right)$
Option D:	$\mathrm{C}_{-\mathrm{n}}=\left(\mathrm{a}_{\mathrm{n}}+\mathrm{j} \mathrm{b}_{\mathrm{n}}\right)$
Q12.	Fourie Series applies to
Option A:	Only periodic signals
Option B:	Only aperiodic signals
Option C:	Both periodic and aperiodic signals
Option D:	Only random signals
Q13.	The Inverse Fourier Transform $\mathrm{x}(\mathrm{t})$ of $\mathrm{X}(\omega)$ is given by $1 / 2 \pi$
Option A:	$\int_{-\infty}^{\infty} X(\omega) e^{-i \omega t} d \omega$

University of Mumbai

Examination 2020- Inter Cluster

Option B:	$\int_{-\infty}^{\infty} X(\omega) e^{i \omega t} d \omega$
Option C:	$\int_{T / 2}^{T / 2} X(\omega) e^{-i \omega t} d \omega$
Option D:	$\int_{-\infty}^{\infty} F(\omega) d \omega$
Q14.	The Fourier Transform of $\mathrm{x}(-\mathrm{t})$ is
Option A:	$\mathrm{X}(\omega)$
Option B:	$\mathrm{X}(-\omega)$
Option C:	$\mathrm{X}(1 / \omega)$
Option D:	-X(ω)
Q15.	The area under Fourier Transform, i.e., $\int_{-\infty}^{\infty} \quad X(\omega) d \omega=$
Option A:	$\mathrm{x}(0)$
Option B:	$\mathrm{X}(0)$
Option C:	$2 \pi \mathrm{x}(0)$
Option D:	$1 / 2 \pi \times(0)$
Q16.	Which one of the following cannot be the ROC of $\frac{5}{(s+3)(s+4)}$
Option A:	$\mathrm{Re}(\mathrm{s})>-3$
Option B:	Re (s) < -4
Option C:	$-4<\operatorname{Re}$ (s) < - 3
Option D:	-3<Re(s)<-4
Q17.	$\mathrm{L}^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$ for $\operatorname{ROC} ;-2<\operatorname{Re}(\mathrm{s})<-1$ is
Option A:	$\mathrm{e}^{-t} u(t)-e^{-2 t} u(t)$
Option B:	$-\mathrm{e}^{-t} u(-t)-e^{-2 t} u(t)$
Option C:	$e^{-t} u(-t)-e^{-2 t} u(-t)$
Option D:	$\mathrm{e}^{-t} u(t)+\mathrm{e}^{-2 t} u(-t)$
Q18.	According to the time-shifting property of Laplace Transform, shifting the signal in time domain corresponds to the
Option A:	Multiplication by $\mathrm{e}^{-\mathrm{st0}}$ in the time domain
Option B:	Multiplication by $\mathrm{e}^{-5 t 0}$ in the frequency domain
Option C:	Multiplication by $\mathrm{e}^{\text {st0 }}$ in the time domain
Option D:	Multiplication by $\mathrm{e}^{\text {st0 }}$ in the frequency domain
Q19.	When is the system said to be causal as well as stable in accordance to pole/zero of ROC specified by system transfer function?
Option A:	Only if all the poles of system transfer function lie in left-half of S-plane
Option B:	Only if all the poles of system transfer function lie in right-half of S-plane
Option C:	Only if all the poles of system transfer function lie at the center of S-plane
Option D:	It can be anywhere

University of Mumbai

Examination 2020- Inter Cluster

Q20.	The Z transform of a system is $\mathrm{H}(\mathrm{z})=\frac{z}{z-0.8}$. If the ROC is $\|\mathrm{z}\|<0.8$, the impulse response of the system is
Option A:	$(0.8)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
Option B:	$-(0.8)^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)$
Option C:	$-(0.8)^{\mathrm{n} u} \mathrm{u}(\mathrm{n})$
Option D:	$(0.8)^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)$

Q. 2	Solve any two. ${ }^{\text {arks } 20}$
1	Find Inverse Laplace Transform for given ROC. (i) $\mathrm{X}(\mathrm{s})=\frac{2 s+1}{(s+2)(s-3)} ; \operatorname{Re}\{\mathrm{s}\}>3$ (ii) $\mathrm{X}(\mathrm{s})=\frac{s 2+6 s+7}{(s+2)(s-3)} ; \operatorname{Re}\{\mathrm{s}\}>3$
2	(i) Determine trigonometric Fourier series representation for the full wave rectified signal.
3	Check whether following signals are power or energy or neither. Find energy and power of signals. (i) $\mathrm{x}(\mathrm{t})=\mathrm{Ae} \mathrm{e}^{-5 \mathrm{t}} \mathrm{u}(\mathrm{t})$ (ii) $\mathrm{x}(\mathrm{t})=\mathrm{A}$ for all t

Q.3	Solve any two.
1	Solve the following difference equation using Z transform for $\mathrm{n}>=0$ $\mathrm{x}[\mathrm{n}-2]-9 \mathrm{x}[\mathrm{n}-1]+18 \mathrm{x}[\mathrm{n}]=0$ when the initial conditions are $\mathrm{x}[-1]=1$ and $\mathrm{x}[-2]=9$
2	State and prove frequency shifting property of Fourier Transform. Hence find the Fourier Transform of éwot
3	Classify following systems for linearity, causality, time variency, stability and invertibility (i) $\quad \mathrm{y}(\mathrm{t})=\mathrm{x}(3 \mathrm{t})$ (ii) $\quad \mathrm{y}[\mathrm{n}]=\mathrm{x}\left[\mathrm{n}^{2}\right]$

