University of Mumbai Examination 2020 under cluster RAIT

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Instrumentation Engineering

Curriculum Scheme: Rev 2016

Examination: TE Semester V

Course Code: ISDLO5012 and Course Name: Optimization Techniques

Time: 2 hour

Max. Marks: 80

01	Choose the correct option for following questions. All the Questions are				
Q1.	compulsory and carry equal marks				
1.	Decision variables are				
Option A:	Controllable				
Option B:	Uncontrollable				
Option C:	Parameters				
Option D:	None of the above				
2.	An optimization model				
Option A:	Mathematically provides the best decision				
Option B:	Provides decision within its limited context				
Option C:	Helps in evaluating various alternatives constantly				
Option D:	All of the above				
3.	In linear programming, constraints can be represented by				
Option A:	equalities				
Option B:	inequalities				
Option C:	ratios				
Option D:	both a and b				
4.	One subset which satisfies inequality part of equation is graphically represented by				
Option A:	domain area of y intercept				
Option B:	range area of x intercept				
Option C:	straight line				
Option D:	shaded area around straight line				
5.	Feasible region's optimal solution for a linear objective function always includes				
Option A:	downward point				
Option B:	upward point				
Option C:	corner point				
Option D:	front point				
6.	The objective functions and constraints are linear relationship between				
Option A:	Variables				
Option B:	Constraints				
Option C:	Functions				
Option D:	All of the above				

7.	Crambia method can be emplied to solve a LDD when there are emply				
/.	Graphic method can be applied to solve a LPP when there are only				
Option A:	variable One				
Option A: Option B:	More than One				
Option D:	Two				
Option D:	Two Three				
Option D.					
8.	If the feasible region of a LPP is empty, the solution is				
Option A:	Infeasible				
Option B:	Unbounded				
Option C:	Alternative				
Option D:	None of the above				
opuon 21					
9.	In simplex method basic solution set as (n-m), all variables other than basic are classified as				
Option A:	constant variable				
Option B:	non positive variables				
Option C:	basic variables				
Option D:	non-basic variable				
10.	Third requirement of simplex method is that all variables are restricted to include				
Option A:	negative even values				
Option B:	odd values				
Option C:	even values				
Option D:	non-negative values				
11.	The variables whose coefficient vectors are unit vectors are called				
Option A:	Unit Variables				
Option B:	Basic Variables				
Option C:	Non basic Variables				
Option D:	None of the above				
12	In linear an anomalies, related analylenes in linear an anomalies are classified as				
12.	In linear programming, related problems in linear programming are classified as dual variables				
Option A: Option B:	single problems				
Option D:	double problems				
Option D:	dual problems				
Option D.					
13.	A function of one argument is maximized when the first derivative				
Option A:	is zero and the second derivative is positive				
Option B:	is positive and the second derivative is positive				
Option C:	is zero and the second derivative is negative				
Option D:	is negative and the second derivative is positive				
· ·					
14.	A "= type" constraint expressed in the standard form is active at a design point if it				
	has				
Option A:	zero value				
Option B:	more than zero value				
Option C:	less than zero value				
Option D:	a & c				

15. When the optimization problem cost functions are differentiable, the problem is referred to as Option A: rough Option B: nonsmooth Option C: smooth Option A: Optimal variables are fictitious and cannot have any physical meaning Option B: Decision variable Option C: Artificial variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f. Option A: A - B Option B: B - C Option D: C - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the							
Option B: nonsmooth Option C: smooth I6. Which variables are fictitious and cannot have any physical meaning Option A: Optimal variable Option D: Decision variable Option D: Control variable Option D: Control variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'P. Option A: A - B Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of gradient vector Option D: gradient vector							
Option C: smooth Option D: a & b 16. Which variables are fictitious and cannot have any physical meaning Option A: Optimal variable Option B: Decision variable Option D: Control variable Option D: Control variable Option D: Control variable I7. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option D: B - C Option D: B - C Option D: B - C - D I8. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option B: inverse of gradient vector Option D: gradient vector I19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option D: inverse of Hessian matrix Option D: in the gradient vector Option D:<	Option A:	rough					
Option D: a & b 16. Which variables are fictitious and cannot have any physical meaning Option A: Optimal variable Option B: Decision variable Option D: Control variable Option D: Control variable In Conjugate gradient vector Option D: Option A: A = B Option B: B - C Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option D: gradient vector Option D: gradient vector Option C: Hessian matrix Option D: gradient vector Option D: gradient vector Option D: gradient vector Option C: Hessian matrix Option D: gradient vector Option D: gradient vector Option D: gradient vector Option D: gradient vector Option D: inverse of Hessian matrix Option D: inve	Option B:						
16. Which variables are fictitious and cannot have any physical meaning Option A: Optimal variable Option B: Decision variable Option D: Control variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f. Option A: A - B Option D: B - C Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the	Option C:						
Option A: Optimal variable Option B: Decision variable Option C: Artificial variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option D: B - C Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the	Option D:						
Option A: Optimal variable Option B: Decision variable Option C: Artificial variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option D: B - C Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the							
Option B: Decision variable Option C: Artificial variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option B: B - C Option D: B - C Option B: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the	16.	Which variables are fictitious and cannot have any physical meaning					
Option C: Artificial variable Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'P. Option A: A - B Option D: B - C Option D: B - C Option D: B - C Option A: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option D: inverse of gradient vector Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option B: negative of the gradient vector Option D: inverse of Hessian matrix Option D: inverse of Hessian matrix Option D: gradient vector 19. In Conjugate gradient vector Option D: negative of the gradient vector Option D: inverse of Hessian matrix Option D:	Option A:						
Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option B: B - C Option D: B - C Option D: B - C Option A: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option B: inverse of Hessian matrix Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option B: negative of the gradient vector 0ption B: negative of the gradient vector 0ption C: hessian matrix 0ption D: inverse of Hessian matrix 0ption D:	Option B:	Decision variable					
Option D: Control variable 17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option B: B - C Option D: B - C Option D: B - C Option A: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option B: inverse of Hessian matrix Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option B: negative of the gradient vector 0ption B: negative of the gradient vector 0ption C: hessian matrix 0ption D: inverse of Hessian matrix 0ption D:	Option C:	Artificial variable					
17. For the points A = 0, B = 1.5, C = 3 and D = 4.5; f(A) = 20.66, f(B) = 13.75, f(C) = 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f'. Option A: A - B Option D: B - C Option A: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector 0ption B: negative of the gradient vector 0ption B: negative of the gradient vector 0ption B: inverse of Hessian matrix 0ption D: gradient vector 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the		Control variable					
= 13.75 and f(D) = 17.22. Which interval should be considered for locating the minimum of 'f. Option A: A - B Option B: B - C Option D: B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	•						
Option B: B - C Option C: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option B: inverse of gradient vector Option D: gradient vector Option D: gradient vector In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option B: negative of the gradient vector Option D: inverse of Hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	17.	= 13.75 and $f(D) = 17.22$. Which interval should be considered for locating the					
Option C: A - B - C Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option B: inverse of gradient vector Option C: Hessian matrix Option D: gradient vector In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option D: inverse of Hessian matrix Option D: inverse of Hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option A:						
Option D: B - C - D 18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option B: inverse of gradient vector Option D: gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option B: negative of the gradient vector Option B: negative of the gradient vector 0ption B: negative of the gradient vector 0ption D: inverse of Hessian matrix 0ption D: inverse of the gradient vector 0ption D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option B:	B-C					
18. The DFP method uses a positive definite symmetric matrix, to approximate the of f(x). Option A: inverse of Hessian matrix Option B: inverse of gradient vector Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector 0ption B: negative of the gradient vector 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option C:						
	Option D:	B - C – D					
Option B: inverse of gradient vector Option C: Hessian matrix Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	18.						
Option C: Hessian matrix Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option A:	inverse of Hessian matrix					
Option D: gradient vector 19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option B:	inverse of gradient vector					
19. In Conjugate gradient method, the direction used to identify next point in the 1st iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option C:	Hessian matrix					
iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option D:	gradient vector					
iteration is Option A: gradient vector Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the							
Option B: negative of the gradient vector Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	19.						
Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option A:	gradient vector					
Option C: hessian matrix Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option B:	negative of the gradient vector					
Option D: inverse of Hessian matrix 20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the							
20. In the method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the	Option D:	inverse of Hessian matrix					
optimal step size, two points A and B are considered such that the slope of the	•						
function has different signs.	20.						
Option A: Quadratic interpolation	Option A:						
Option B: Cubic Interpolation	Option B:	Cubic Interpolation					
Option C: SDM							
Option D: Fletcher-Reeves		Fletcher-Reeves					

Q2 (20 Marks)					
A	Solve any One 10 marks each				
i.	Formulate and solve the optimization problem.				
	An assembly line consisting of three consecutive stations produces two radio models: HiFi-1 and HiFi-2. The following table provides the assembly times for the three workstations.				
		Workstation	Minutes	s per unit	
		W OIKStation	HiFi-1	HiFi-2	
		1	6	4	
		2	5	5	
		3 intenance for stati	4	6	
	respectively, of the maximum 480 minutes available for each station each day. The company wishes to determine the optimal product mix that will minimize the idle (or unused) times in the three workstations.				•
ii.	Solve by Simplex method Maximize $Z = 12x_1 + 15x_2 + 14x_3$				
	Subject to $-x_1 + x_2 \le 0$				
		$x_2 + 2x_3 \le 0$			
	$x_1 + x_2 + x_3 \le 100$				
	:	$x_1, x_2, x_3 \ge 0$			
В	Solve any O	ne		10 m	arks each
i.		mum of the functi	on		
	$f(x) = 10x^6 -$	$-48x^5 + 15x^4 + 200$	$0x^3 - 120x^2 - 480x$	x+100	
ii.	Define local and global minima and maxima with example. State necessary and sufficient conditions for single variable optimization with no constraints.				

Q3 (20 Marks)			
A	Solve any Two 5 marks each		
i.	Explain the terms		
	Design variables and Objective function		
ii.	Discuss properties of gradient vector		
iii.	Explain global and local maxima with an example.		
В	Solve any One 10 marks each		
i.	Solve by Two Phase method		
	$Maximize f = x_1 + x_2 + 2x_3$		
	S. T. $2x_1 + x_2 + 2x_3 \le 8$		
	$x_1 + x_2 + x_3 \ge 2$		
	$-x_1 + x_2 + 2x_3 = 1$		
	$x_1, x_2, x_3 \ge 0$		
ii.	Minimize $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_1x_2$ using Steepest Descent Method		
	starting at point (1,0).		