University of Mumbai

Examination 2020 under cluster RAIT
Examinations Commencing from $7^{\text {th }}$ January 2021 to 20 ${ }^{\text {th }}$ January 2021
Program: Instrumentation Engineering
Curriculum Scheme: Rev 2016
Examination: TE Semester V
Course Code: ISDLO5012 and Course Name: Optimization Techniques
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Decision variables are
Option A:	Controllable
Option B:	Uncontrollable
Option C:	Parameters
Option D:	None of the above
2.	An optimization model
Option A:	Mathematically provides the best decision
Option B:	Provides decision within its limited context
Option C:	Helps in evaluating various alternatives constantly
Option D:	All of the above
3.	In linear programming, constraints can be represented by
Option A:	equalities
Option B:	inequalities
Option C:	ratios
Option D:	both a and b
4.	One subset which satisfies inequality part of equation is graphically represented by
Option A:	domain area of y intercept
Option B:	range area of x intercept
Option C:	straight line
Option D:	shaded area around straight line
5.	Feasible region's optimal solution for a linear objective function always includes
Option A:	downward point
Option B:	upward point
Option C:	corner point
Option D:	front point
6.	The objective functions and constraints are linear relationship between -------------
Option A:	Variables
Option B:	Constraints
Option C:	Functions
Option D:	All of the above

7.	Graphic method can be applied to solve a LPP when there are only variable
Option A:	One
Option B:	More than One
Option C:	Two
Option D:	Three
8.	If the feasible region of a LPP is empty, the solution is -------------------
Option A:	Infeasible
Option B:	Unbounded
Option C:	Alternative
Option D:	None of the above
9.	In simplex method basic solution set as ($\mathrm{n}-\mathrm{m}$), all variables other than basic are classified as
Option A:	constant variable
Option B:	non positive variables
Option C:	basic variables
Option D:	non-basic variable
10.	Third requirement of simplex method is that all variables are restricted to include
Option A:	negative even values
Option B:	odd values
Option C:	even values
Option D:	non-negative values
11.	The variables whose coefficient vectors are unit vectors are called ------------
Option A:	Unit Variables
Option B:	Basic Variables
Option C:	Non basic Variables
Option D:	None of the above
12.	In linear programming, related problems in linear programming are classified as
Option A:	dual variables
Option B:	single problems
Option C:	double problems
Option D:	dual problems
13.	A function of one argument is maximized when the first derivative
Option A:	is zero and the second derivative is positive
Option B:	is positive and the second derivative is negative
Option C:	is zero and the second derivative is negative
Option D:	is negative and the second derivative is positive
14.	A "= type" constraint expressed in the standard form is active at a design point if it has
Option A:	zero value
Option B:	more than zero value
Option C:	less than zero value
Option D:	a \& c

15.	When the optimization problem cost functions are differentiable, the problem is referred to as
Option A:	rough
Option B:	nonsmooth
Option C:	smooth
Option D:	a \& b
16.	Which variables are fictitious and cannot have any physical meaning
Option A:	Optimal variable
Option B:	Decision variable
Option C:	Artificial variable
Option D:	Control variable
17.	For the points $\mathrm{A}=0, \mathrm{~B}=1.5, \mathrm{C}=3$ and $\mathrm{D}=4.5 ; \mathrm{f}(\mathrm{A})=20.66, \mathrm{f}(\mathrm{B})=13.75, \mathrm{f}(\mathrm{C})$ $=13.75$ and $f(D)=17.22$. Which interval should be considered for locating the minimum of ' f '.
Option A:	A-B
Option B:	B-C
Option C:	A - B-C
Option D:	B - C-D
18.	The DFP method uses a positive definite symmetric matrix, to approximate the \qquad of $f(x)$.
Option A:	inverse of Hessian matrix
Option B:	inverse of gradient vector
Option C:	Hessian matrix
Option D:	gradient vector
19.	In Conjugate gradient method, the direction used to identify next point in the 1st iteration is
Option A:	gradient vector
Option B:	negative of the gradient vector
Option C:	hessian matrix
Option D:	inverse of Hessian matrix
20.	In the \qquad method, in order to establish upper and lower bounds on the optimal step size, two points A and B are considered such that the slope of the function has different signs.
Option A:	Quadratic interpolation
Option B:	Cubic Interpolation
Option C:	SDM
Option D:	Fletcher-Reeves

Q3 (20 Marks)	
A	Solve any Two
i.	Explain the terms Design variables and Objective function
ii.	Discuss properties of gradient vector
iii.	Explain global and local maxima with an example.
B	Solve any One
i.	Solve by Two Phase method Maximize $\mathrm{f}=\mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}$ $2 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 8$ $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \geq 2$
S. T. $\quad$$\mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}=1$	
ii.	Minimize $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}$ using Steepest Descent Method starting at point $(1,0)$.

