University of Mumbai
 Examination 2020- Inter Cluster

Program: BE Instrumentation Engineering

Curriculum Scheme: Revised 2016

Examination: Final Year Semester VII
Course Code and Course Name: ISDLO7031 Image Processing
Time: 1hour
Max. Marks: 80

Q.1] Note to the students: - All Questions are compulsory and carry equal marks. Marks 40

Q1.	What is the effect caused by the use of an insufficient number of samples in a digital image called?
Option A:	Image Enhancement
Option B:	Checkerboard Effect
Option C:	Quantization
Option D:	False Contouring
Q2.	What is the storage requirement of a 1024X1024, 32 level gray scale image?
Option A:	5,242,880
Option B:	3,145,728
Option C:	1,048,576
Option D:	1,310,720
Q3.	Consider two pixels p and q whose coordinates are $(0,0)$ and $(9,2)$. What would be the D_{4} distance between p and q ?
Option A:	6
Option B:	11
Option C:	9
Option D:	18
Q4.	Two pixels p and q with values from V are 4 -adjacent if
Option A:	q is in the set $\mathrm{N}_{4}(\mathrm{p})$
Option B:	q is in the set $\mathrm{N}_{\mathrm{D}}(\mathrm{p})$
Option C:	q is in the set $\mathrm{N}_{8}(\mathrm{p})$
Option D:	q is in $\mathrm{N}_{\mathrm{D}}(\mathrm{p})$ and the set $\mathrm{N}_{4}(\mathrm{p}) \cap \mathrm{N}_{4}(\mathrm{q})$ has pixels whose values are from V
Q5.	If matrix T is Unitary matrix, then which of the following is true?
Option A:	T^{*} ' $=\mathrm{T}$
Option B:	TT' $=\mathrm{I}$
Option C:	$\mathrm{y}=\mathrm{Tx}$
Option D:	TT*' $=$ I
Q6.	Which of the following is the widely used linear transform in data compression to

University of Mumbai

Examination 2020- Inter Cluster

	reduce the high memory and bandwidth requirement?
Option A:	Discrete Cosine Transform
Option B:	Discrete Sine Transform
Option C:	Hartley Transform
Option D:	Walsh Hadamard Transform
Q7.	Compute discrete Walsh Transform of the data sequence $[1,5,0,7]$
Option A:	$\{1,-1,0, \sqrt{ } 2\}$
Option B:	$[1,2,0,3]$
Option C:	$[13,-1,3,-11]$
Option D:	$[13,-1,3,-11]$
Q. 7	Compute Hadamard Transform of the sequence $[1,2,3,4]$
Option A:	$[10,-2,-4,0]$
Option B:	$[0,-4,-2,10]$
Option C:	$[10,-2,-4,0]$
Option D:	$[0,-4,-2,10]$
Q8.	Which filter is more effective in reducing sharp transitions in gray levels from the digital images?
Option A:	Median Filter
Option B:	Averaging Filter
Option C:	Wiener Filter
Option D:	High Pass Filter
Q9.	Find the negative of the digital image with 8 gray levels and given by the matrix $\mathrm{f}(\mathrm{x}, \mathrm{y})=[135 ; 443 ; 522]$
Option A:	$\mathrm{g}(\mathrm{x}, \mathrm{y})=[753 ; 445 ; 366]$
Option B:	$\mathrm{g}(\mathrm{x}, \mathrm{y})=[532 ; 223 ; 144]$
Option C:	$\mathrm{g}(\mathrm{x}, \mathrm{y})=[246 ; 554 ; 633]$
Option D:	$\mathrm{g}(\mathrm{x}, \mathrm{y})=[642 ; 334 ; 255]$
Q10.	Which piecewise linear transformation highlights a specific range of gray levels in an image?
Option A:	Power Law Transformation
Option B:	Contrast Stretching
Option C:	Bit Plane Slicing
Option D:	Gray Level Slicing
Qption D:	No diftogram Equalization is to produce an output image that has a flattened
Option A:	What is the difference between Histogram Equalization and Histogram Matching? Histogram Equalization is to produce an output image that has low contrast histogram, Histogram Matching is to take an input image and generate an output image that is based upon the shape of a reference histogram
Option B:	Histogram Equalization is to produce an output image that has a flattened imate

University of Mumbai

Examination 2020- Inter Cluster

	histogram, Histogram Matching is to take an input image and generate an output image that is not based on the shape of a reference histogram
Q12.	Which of the following Arithmetic/Logic Operation is suitable for mask mode radiography?
Option A:	NOT Logic Operator
Option B:	OR Logic Operator
Option C:	Image Subtraction
Option D:	Image Averaging
Q13.	The first order derivative of the digital image can be obtained through which of the following operators. Select correct operator.
Option A:	The Elliptic Operator
Option B:	The Laplacian Operator
Option C:	The Difference Operator
Option D:	The Gradient Operator
Q14.	Opening smoothens the image's
Option A:	Pixels
Option B:	Lines
Option C:	Contour
Option D:	Boundary
Q15.	With dilation process images get
Option A:	Thinner
Option B:	Shrinked
Option C:	Thickened
Option D:	sharpened
Q16.	Closing produces
Option A:	Narrow breaks
Option B:	Lines
Option C:	Dots
Option D:	noise
Q17.	What would be the value of first derivative approximation at the point of transition into and out of the ramp?
Option A:	Nonzero
Option B:	Negative
Option C:	Positive
Option D:	Zero
Q18.	Which mask out of the following should be used for finding Vertical Line?
Option A:	$[-12-1 ;-12-1 ;-12-1]$
Option B:	$[2-1-1 ;-12-1 ;-1-12]$
Option C:	$[-1-1-1 ; 222 ;-1-1-1]$
Option D:	$[-1-12 ;-12-1 ; 2-1-1]$

University of Mumbai

Examination 2020- Inter Cluster

Q19.	A gradient operator for edge detection is
Option A:	Prewitt
Option B:	Second order derivative
Option C:	Zero crossing operator
Option D:	Median
Q20.	Which of the following methods is not used for Image Compression?
Option A:	Discrete Cosine Transform
Option B:	Discrete Fourier Transform
Option C:	Walsh Hadamard Transform
Option D:	Discrete Sine Transform

