Vidyavardhini's College of Engineering \& Technology, Vadai(w) Department of Electronics \& Telecommunication Engineering

Curriculum Scheme: Rev2016
Examination: SE Semester: III
Course Code: ECC504 and Course Name: Electronic Discrete Time Signal Processing
Time: 2 Hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Radix-2 FFT algorithm performs the computation of DFT in
Option A:	$\mathrm{N} / 2 \log _{2} \mathrm{~N}$ multiplications and $2 \log _{2} \mathrm{~N}$ additions
Option B:	$\mathrm{N} / 2 \log _{2} \mathrm{~N}$ multiplications and $\mathrm{NLog}_{2} \mathrm{~N}$ additions
Option C:	$\log _{2} \mathrm{~N}$ multiplications and $\mathrm{N} / 2 \mathrm{Log}_{2} \mathrm{~N}$ additions
Option D:	$\mathrm{NLog}_{2} \mathrm{~N}$ multiplications and $\mathrm{N} / 2 \log _{2} \mathrm{~N}$ additions
2.	In which type of computation following butterfly diagram is used
Option A:	Linear Convolution using DFT and IDFT
Option B:	Decimation in Time FFT
Option C:	Circular Convolution using Time domain method
Option D:	Decimation in Frequency FFT
3.	The transformation technique in which there is many to one mapping from s-domain to z -domain is
Option A:	Bilinear transformation method
Option B:	Impulse Invariant Method
Option C:	Butterworth Method
Option D:	Sampling Method
4.	Which of the following substitution is done in Bilinear transformations?
Option A:	$\mathrm{s}=\frac{2}{T}\left[\frac{1+Z^{-1}}{1-Z^{-1}}\right]$
Option B:	$\mathrm{s}=\frac{2}{T}\left[\frac{Z^{-1}}{1+Z^{-1}}\right]$
Option C:	$\mathrm{s}=\frac{2}{T}\left[\frac{1-Z^{-1}}{1+Z^{-1}}\right]$

Option D:	$\mathrm{s}=\frac{2}{T}\left[\frac{1}{1+Z^{-1}}\right]$
5.	Which of the following is not suitable either as low pass or a high pass filter?
Option A:	$\mathrm{h}(\mathrm{n})$ symmetric and M odd
Option B:	$h(\mathrm{n})$ symmetric and M even
Option C:	$\mathrm{h}(\mathrm{n})$ anti-symmetric and M odd
Option D:	$\mathrm{h}(\mathrm{n})$ anti-symmetric and M even
6.	What is the approximate transition width of main lobe of a Hamming window?
Option A:	$4 \pi / \mathrm{M}$
Option B:	$8 \pi / \mathrm{M}$
Option C:	$12 \pi / \mathrm{M}$
Option D:	$2 \pi / \mathrm{M}$
7.	The quality of output signal from A/D converter is measured in terms of
Option A:	Quantization error
Option B:	Quantization to signal noise ratio
Option C:	Signal to quantization noise ratio
Option D:	Conversion constant
8.	Quantizing products leads to errors, popularly known as
Option A:	Aliasing
Option B:	Input errors
Option C:	Round-off errors
Option D:	Floating errors
9.	The length of the truncated filter should be
Option A:	M
Option B:	M-1
Option C:	Infinite
Option D:	$\mathrm{M}+1$
10.	Which type of architecture uses different storage space for program code and the data?
Option A:	Von Neumann architecture
Option B:	Harvard architecture
Option C:	Fragmented architecture
Option D:	Split cell architecture
11.	In Overlap save method of long sequence filtering, what is the length of the input sequence block?
Option A:	L+M-1
Option B:	L+M
Option C:	L
Option D:	L-M-1
12.	FIR filter is -------.
Option A:	Stable
Option B:	Causal

Option C:	stable and causal
Option D:	stable and non causal
13.	Which of the following windows has a time domain sequence $h(n)=\frac{1}{2}\left(1-\cos \frac{2 \pi n}{M-1}\right)$?
Option A:	Bartlett window
Option B:	Blackman window
Option C:	Rectangular window
Option D:	Hanning window
14.	For the T.F $(Z) \frac{Z}{Z-0.9}$, Which of the following statement is correct?
Option A:	The system is maximum phase system
Option B:	The system is minimum phase system
Option C:	The system is all pass system
Option D:	The system is mixed phase system
15.	Which one is the common variable for EEG \& ECG?
Option A:	Time
Option B:	Special coordinates
Option C:	Pressure
Option D:	Temperature
16.	If Transfer Function $\boldsymbol{H}(\boldsymbol{Z})=\frac{(\mathbf{z}+\mathbf{0 . 9)}}{(\mathbf{z}-\mathbf{0 . 9})(\mathbf{z}-\mathbf{0 . 8)}}$. Determine the stability of system based on location of pole zero.
Option A:	Stable
Option B:	Unstable
Option C:	Marginally Stable
Option D:	None of the above
17.	If Transfer Function $\boldsymbol{H}(\boldsymbol{Z})=\frac{(\mathbf{z}+\mathbf{0 . 9})}{(\mathbf{z}-\mathbf{0 . 9})(\mathbf{z}-\mathbf{0 . 8)}}$. Determine the stability of system based on location of pole zero.
Option A:	Stable
Option B:	Unstable
Option C:	Marginally Stable
Option D:	None of the above
18.	If three co-efficients of $h_{d}(n)$ for length 5 are $\{0.005,0.2,0.25\}$, remaining coefficient of $h_{d}(n)$ for rectangular windows are of linear phase FIR filter are
Option A:	\{0.05, 0.2, 0.25\}
Option B:	\{0.2, 0.005\}
Option C:	\{0.05, 0.2\}
Option D:	\{0.25,0.2, 0.005\}
19.	Identify the function of MAC unit (frame multiple choice)
Option A:	Multiply and Add data in one cycle
Option B:	Multiply and Add data in multiple cycle

Option C:	Multiply, Shift data and add data in one cycle
Option D:	Multiply and Shift data in multiple cycle
20.	Determine value of analog frequency $\Omega \mathrm{c}$ when digital frequency $\mathrm{Wc}=0.2 \pi$ rad and Ts $=1$ sec using Bilinear Transformation.
Option A:	$0.65 \mathrm{rad} / \mathrm{sec}$
Option B:	$1 \mathrm{rad} / \mathrm{sec}$
Option C:	0.65 rad
Option D:	1 rad

Q2	Solve any Two Questions out of Three 10 marks each
A	Design digital Butterworth Filter to satisfy the following conditions: $\begin{array}{lc} 0.707 \leq\|H(w)\| \leq 1 & 0 \leq W \leq 0.2 \pi \\ \|H(w)\| \leq 0.1 & 0.5 \pi \leq W \leq \pi \end{array}$ Use Bilinear Transformation and assume $T \mathrm{~s}=1 \mathrm{sec}$.
B	Design a linear phase FIR low Pass filter of length 7 and cut off frequency 101 rad/sec using Hamming Window
C	Find the DFT X(K) of sampled data sequence $x(n)=\{1,2,3,4\}$ Determine DFT of $x 1(n)$ and $x 2(n)$ and $x 3(n)$ using $X(K)$ only. $x l(n)=\{4,1,2,3\}$ $x 2(n)=\{2,3,4,1\}$ $x 3(n)=\{6,4,6,4\}$

Q3.	
A	Solve any Two
i.	Explain application of DSP processor to radar signal processing.
ii.	Differentiate Fixed point and floating-point implementation.
iii.	Compare IIR and FIR digital filters
B	Solve any One
i.	Architecture of TMS320C67XX digital signal processor
ii.	Effect of finite word length in digital filters

