Vidyavardhini's College of Engineering & Technology, Vadai(w) Department of Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2016 Examination: SE Semester: III

Course Code: ECC504 and Course Name: Electronic Discrete Time Signal Processing

Time: 2 Hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Radix - 2 FFT algorithm performs the computation of DFT in
Option A:	N/2Log ₂ N multiplications and 2Log ₂ N additions
Option B:	N/2Log ₂ N multiplications and NLog ₂ N additions
Option C:	Log ₂ N multiplications and N/2Log ₂ N additions
Option D:	NLog ₂ N multiplications and N/2Log ₂ N additions
2.	In which type of computation following butterfly diagram is used
	x[1] $x[1]$ $x[2]$ $x[2]$ $x[3]$ $x[4]$ $x[2]$
	$x[3] \circ W_{N}^{\circ} \circ X[6]$ $x[4] \circ W_{N}^{\circ} \circ X[1]$ $x[5] \circ W_{N}^{\circ} \circ X[5]$
	$x[7]$ W_N^2 W_N^2 $X[7]$ W_N^2 $X[7]$
Option A:	Linear Convolution using DFT and IDFT
Option B:	Decimation in Time FFT
Option C:	Circular Convolution using Time domain method
Option D:	Decimation in Frequency FFT
3.	The transformation technique in which there is many to one mapping from s-domain to z-domain is
Option A:	Bilinear transformation method
Option B:	Impulse Invariant Method
Option C:	Butterworth Method
Option D:	Sampling Method
4.	Which of the following substitution is done in Bilinear transformations?
Option A:	$S = \frac{2}{T} \left[\frac{1 + Z^{-1}}{1 - Z^{-1}} \right]$
Option B:	$s = \frac{2}{T} \left[\frac{Z^{-1}}{1 + Z^{-1}} \right]$
Option C:	$s = \frac{2}{T} \left[\frac{1 - Z^{-1}}{1 + Z^{-1}} \right]$

Option D:	$S = \frac{2}{T} \left[\frac{1}{1 + Z^{-1}} \right]$
_	T 1+Z-11
5.	Which of the following is not suitable either as low pass or a high pass filter?
Option A:	h(n) symmetric and M odd
Option B:	h(n) symmetric and M even
Option C:	h(n) anti-symmetric and M odd
Option D:	h(n) anti-symmetric and M even
opiion 2.	n(n) union of minorate union 112 e von
6.	What is the approximate transition width of main lobe of a Hamming window?
Option A:	$4\pi/\mathrm{M}$
Option B:	$8\pi/M$
Option C:	$12\pi/M$
Option D:	$2\pi/M$
7.	The quality of output signal from A/D converter is measured in terms of
Option A:	Quantization error
Option B:	Quantization to signal noise ratio
Option C:	Signal to quantization noise ratio
Option D:	Conversion constant
8.	Quantizing products leads to errors, popularly known as
Option A:	Aliasing
Option B:	Input errors
Option C:	Round-off errors
Option D:	Floating errors
9.	The length of the truncated filter should be
Option A:	M
Option B:	M-1
Option C:	Infinite
Option D:	M+1
•	
10.	Which type of architecture uses different storage space for program code and the data?
Option A:	Von Neumann architecture
Option B:	Harvard architecture
Option C:	Fragmented architecture
Option D:	Split cell architecture
11.	In Overlap save method of long sequence filtering, what is the length of the input
	sequence block?
Option A:	L+M-1
Option B:	L+M
Option C:	L
Option D:	L-M-1
12.	FIR filter is
Option A:	Stable
Option B:	Causal

Option C:	stable and causal
Option D:	stable and non causal
option 2.	
13.	Which of the following windows has a time domain sequence $h(n) = \frac{1}{2}(1 - \cos\frac{2\pi n}{M-1})$?
Option A:	Bartlett window
Option B:	Blackman window
Option C:	Rectangular window
Option D:	Hanning window
_	
14.	For the T.F (Z) $\frac{Z}{Z-0.9}$, Which of the following statement is correct?
Option A:	The system is maximum phase system
Option B:	The system is minimum phase system
Option C:	The system is all pass system
Option D:	The system is mixed phase system
15.	Which one is the common variable for EEG & ECG?
Option A:	Time
Option B:	Special coordinates
Option C:	Pressure
Option D:	Temperature
16.	If Transfer Function $H(Z) = \frac{(z+0.9)}{(z-0.9)(z-0.8)}$. Determine the stability of system based on location of pole zero.
Option A:	Stable
Option B:	Unstable
Option C:	Marginally Stable
Option D:	None of the above
Option D.	Notice of the above
17.	If Transfer Function $H(Z) = \frac{(z+0.9)}{(z-0.9)(z-0.8)}$. Determine the stability of system based on location of pole zero.
Option A:	Stable
Option B:	Unstable
Option C:	Marginally Stable
Option D:	None of the above
opnon 2.	None of the above
18.	If three co-efficients of $h_d(n)$ for length 5 are {0.005, 0.2, 0.25}, remaining coefficient of $h_d(n)$ for rectangular windows are of linear phase FIR filter are
Option A:	{0.05, 0.2, 0.25}
Option A:	{0.2, 0.005}
Option C:	{0.05, 0.03}
Option C:	{0.05, 0.2}
<u> </u>	[U.23,U.2, U.UU3]
19.	Identify the function of MAC unit (frame multiple choice)
Option A:	Multiply and Add data in one cycle
Option B:	Multiply and Add data in one cycle Multiply and Add data in multiple cycle
Opnon D.	manpy and much in multiple cycle

Option C:	Multiply, Shift data and add data in one cycle
Option D:	Multiply and Shift data in multiple cycle
20.	Determine value of analog frequency Ωc when digital frequency
	Wc= 0.2π rad and Ts=1sec using Bilinear Transformation.
Option A:	0.65 rad/sec
Option B:	1 rad/sec
Option C:	0.65 rad
Option D:	1 rad

Q2	Solve any Two Questions out of Three	10 marks each
	Design digital Butterworth Filter to satisfy the following conditions:	g
A	$ 0.707 \le H(w) \le 1$ $0 \le W \le 0.2 \pi$	
	$ H(w) \le 0.1 \qquad 0.5 \ \pi \le W \le \pi$	
	Use Bilinear Transformation and assume Ts= 1sec.	
В	Design a linear phase FIR low Pass filter of length 7 and	d cut off frequency 10 1
В	rad/sec using Hamming Window	
	Find the DFT $X(K)$ of sampled data sequence $x(n) = \{1, 2, \dots, n\}$,2,3,4}
	Determine DFT of $x1(n)$ and $x2(n)$ and $x3(n)$	
C	using $X(K)$ only.	
	$x1(n) = \{4,1,2,3\}$	
	$x2(n)=\{2,3,4,1\}$	
	$x3(n) = \{6,4,6,4\}$	

Q3.		
A	Solve any Two	5 marks each
i.	Explain application of DSP processor to radar signal proce	essing.
ii.	Differentiate Fixed point and floating-point implementation	on.
iii.	Compare IIR and FIR digital filters	
В	Solve any One	10 marks each
i.	Architecture of TMS320C67XX digital signal processor	
ii.	Effect of finite word length in digital filters	