Program: SE

Curriculum Scheme: Revised 2019

Examination: Second Year Semester III

Course Code: ECC/320

Time: 1-hour

Course Name: Electronics devices circuit
Max. Marks: 80

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	If the temperature of a diode increases, then leakage current and Base emitter voltage.
Option A:	Increases, Increases
Option B:	Decreases, decreases
Option C:	Decreases, Increases
Option $\mathrm{D}:$	Increases, decreases
Q2.	Load Regulation should be \qquad and Line Regulation should be \qquad for good power Supply.
Option A:	as low as possible, as high possible
Option B:	as low as possible, as low possible
Option C:	as high as possible, as high possible
Option D:	as high as possible, as low possible
Q3.	In class B push pull Power Amplifier deliver 8W of audio power to output load if transformer efficiency 80\%. Calculate Pidc
Option A:	12.73W
Option B:	11.31W
Option C:	13.4W
$\begin{array}{\|l} \hline \text { Option } \\ \text { D: } \\ \hline \end{array}$	11.13W

Q4.	Heat sink is used in Power transistor to
Option A:	Increase Maximum Power dissipation rating of transistor
Option B:	Decrease Maximum Power dissipation rating of transistor
Option C:	No change in maximum power dissipation rating of transistor
Option D:	Increase/Decrease Maximum Power dissipation rating of transistor
Q5.	Calculate IB base current and Ic collector current $\mathrm{Vcc}=9 \mathrm{~V}$ RB $=330 \mathrm{~K} \Omega \mathrm{RC}=1 \mathrm{~K} \Omega, \beta=100$ for fixed bias circuit.
Option A:	$25.15 \mu \mathrm{~A}, 2.5 \mathrm{~mA}$
Option B:	$2.5 \mu \mathrm{~A}, 2.5 \mathrm{~mA}$
Option C:	$25.15 \mu \mathrm{~A}, 25.15 \mathrm{~mA}$
Option D:	$2.6 \mu \mathrm{~A}, 26 \mathrm{~mA}$
Q6.	Calculate the total input capacitance, if amplifier has midrange voltage gain 80, the transistor's Cbc is 4pfand Cbe $=8 \mathrm{pf}$.
Option A:	332pf
Option B:	4pf
Option C:	8pf
Option D:	232pf
Q7.	For a given circuit if CE capacitor is removed, what is an effect on voltage gain and input impedance.

Option A:	Voltage gain increases, Input impedance increases
Option B:	Voltage gain decreases, Input impedance increases
Option C:	Voltage gain increases, Input impedance decreases
Option D:	Voltage gain decreases, Input impedance decreases
Q8.	For a given Amplifier Calculate voltage gain, IDSS=7mA, $\mathrm{Vp}=-2.5 \mathrm{~V}$ Vgs $=1.6 \mathrm{~V}, \mathrm{gm0}=5600 \mu \mathrm{~s}, \mathrm{Rg}=1 \mathrm{M} \Omega, \mathrm{Rd}=2 \mathrm{~K} \Omega, \mathrm{RL}=10 \mathrm{~K} \Omega$
Option A:	-3.36
Option B:	4.032
Option C:	20.16
Option D:	5.06
Q9.	Calculate output resistance of an amplifier circuit. (use circuit of Q.8)
Option A:	10K Ω
Option B:	$1.667 \mathrm{~K} \Omega$
Option C:	$2 \mathrm{k} \Omega$
Option D:	Infinite
Q10.	In class A Power Amplifier power dissipation in transistor under no signal condition is \qquad .
Option A:	Less

Option B:	More	
Option C:	Twice the power dissipation under signal condition	
Option D:	Same as Power dissipation under signal condition	
Q11.	In CE amplifier RE bypassed if load resistor is given, Voltage gain is given by	
Option A:	$\beta R C / r \pi$	
Option B:	$-\beta(\mathrm{RC}\| \| R \mathrm{RL}) / \mathrm{rr}$	
Option C:	- β RC/ /r π	
Option D:	- $\beta \mathrm{RC} /$ / $\mathrm{r} \pi$ \|	RL)
Q12.	Q point is affected by temperature. Temperature dependent parameters are	
Option A:	β	
Option B:	VBE	
Option C:	ICBO, β	
Option D:	VBE,ICBO, β	
Q13.	BJT is current controlled device	
Option A:	IC current depends on IB current	
Option B:	IB current depends on IC current	
Option C:	IC current depends on VBE voltage	
Option D:	IB current depends on VBE voltage	
Q14.	To use MOSFET as an amplifier, it should be biased in	
Option A:	Saturation Region	
Option B:	Ohmic region	
Option C:	Linear region	
Option D:	Cut off region	

Q15.	For a given Amplifier, calculate voltage gain of an amplifier. $r \pi=1.5 \mathrm{~K} \Omega, \beta=120$
Option A:	184.61
Option B:	800
Option $\mathrm{C}:$	160
Option D:	190
Q16.	For N channel MOSFET IDQ $=1 \mathrm{~mA}, \mathrm{Kn}=0.85 \mathrm{~mA} / \mathrm{V} 2, \mathrm{VTN}=0.8 \mathrm{~V}$, Find VGS.
Option A:	1.88 V
Option B:	2.3 V
Option C:	0.8 V
Option D:	OV
Q17.	Calculate IB for a circuit shown

| Q20. | Calculate lower cut-off frequency $\mathrm{F}_{L C 3}$ if $\mathrm{C}_{3}=1 \mu \mathrm{f}$ for a given circuit. |
| :--- | :--- | :--- |

Q.2 (A)(i)	Explain Frequency response of an amplifier and its significance. For a given circuit if CE capacitor is removed, what is an effect on voltage gain and input impedance.
Q.2 (A)(ii)	For Zener voltage regulator output voltage is 9V from an automobile battery whose voltage may vary between 11V and 13.6 V . The current vary between OmA to 100mA.Find Rs resistor and Pzmax.
Q.2 (A)(iii)	Find VGS, VDS for given circuit if ID $=5 \mathrm{~mA}$. Figure is shown below

Q.3(A)(i)	State and explain Miller's Theorem.
Q.3 (A)(ii)	For the circuit shown find ID and VDS if $\mathrm{VRS}=1.5 \mathrm{~V}, \mathrm{RD}=2 \mathrm{k} \Omega, \mathrm{RG}=1 \mathrm{M} \Omega, \mathrm{VDD}=15 \mathrm{~V}$, IDSS=10mA, $\mathrm{Vp}=-2 \mathrm{~V}$

