Program: BE Electronics \& Telecommunication Engineering

Curriculum Scheme: Revised 2016
Examination: Third Year Semester V
Course Code: ECC503 and Course Name: Electromagnetic Engineering
Time: 2hours
Max. Marks: 80

Q1. All the MCQs are compulsory and carry equal marks. Marks: 40

1.	Choose and justify what will be the new force, if the charges are moved to a medium having $\varepsilon r=6$ without changing the distance between them.
Option A:	will increase by 6 times
Option B:	will decrease by 0.166 times
Option C:	will decrease by $\sqrt{6}$ times
Option D:	will increase by 36 times
2	Determine the flux density if sheet of charge density is $25 \mathrm{C} / \mathrm{m}^{2}$.
Option A:	3.125
Option B:	6.25
Option C:	12.5
Option D:	25
3	Three charged cylindrical sheets $\rho 11=5 \mathrm{c} / \mathrm{m}$ at $\mathrm{R}=6 \mathrm{~m}, \rho \mathrm{l} 2=-6 \mathrm{C} / \mathrm{m}$ at $R=7 \mathrm{~m}$ and $\rho l 3=-7 \mathrm{C} / \mathrm{m}$ at $\mathrm{R}=8 \mathrm{~m}$. Find the flux density at $\mathrm{R}=$ 1 m .
Option A:	3
Option B:	2
Option C:	1
Option D:	0
4	Calculate is the electric field intensity at a distance of 2 m from a charge 4 nC in vacuum?
Option A:	$8982 \mathrm{~V} / \mathrm{m}$
Option B:	$7982 \mathrm{~V} / \mathrm{m}$
Option C:	8992V/m
Option D:	7992V/m
5	Find the potential at origin if Six equal point charges $\mathrm{Q}=5 \mathrm{nC}$ are located at $1,2,3,4,5,6, \mathrm{~m}$.
Option A:	120 volts
Option B:	110 volts
Option C:	100 volts
Option D:	90 volts
6	The work done by a charge of $100 \mu \mathrm{C}$ with a potential 2.78 volts is \qquad μ joule
Option A:	178

Option B:	278
Option C:	378
Option D:	478
7.	Find the field intensity after reflection. The reflected wave is at an angle of 60 degree. A wave incident on a surface at an angle 30 degree is having field intensity of 3 units
Option A:	5.46
Option B:	4.46
Option C:	6.46
Option D:	3
	46
8.	Calculate the attenuation constant of a conductor of conductivity 100 units, frequency $1000 \mathrm{radian} / \mathrm{s}$ in air.
Option A:	0.25
Option B:	0.5
Option C:	0.75
Option D:	1
9.	For a low loss line when both conductor and di-electric loss is small, the assumption that could be made is:
Option A:	$\mathrm{R} \ll \omega \mathrm{L}$ and $\mathrm{G} \ll \omega \mathrm{C}$
Option B:	$\mathrm{R} \gg \omega \mathrm{L}$ and $\mathrm{G} \gg \omega \mathrm{C}$
Option C:	$\mathrm{R} \ll \omega \mathrm{C}$ and $\mathrm{G} \ll \omega \mathrm{L}$
Option D:	$\mathrm{R} \gg \omega \mathrm{C}$ and $\mathrm{G} \gg \omega \mathrm{L}$
10.	Calculate the velocity of a wave with frequency $4 \times 10^{9} \mathrm{rad} / \mathrm{s}$ and phase constant of 2×10^{8} units.
Option A:	50
Option B:	5
Option C:	20
Option D:	2
11.	Electric field and magnetic field intensities in electromagnetic wave are 10 and 6 respectively calculate the power
Option A:	120
Option B:	30
Option C:	60
Option D:	90
12.	In a two-port network, the load impedance was measured to be 75Ω and the characteristic impedance of the transmission line was measured to be 100Ω. Then the reflection coefficient at the load end is:
Option A:	-0.142
Option B:	0.678
Option C:	-7
Option D:	0.2345

13.	The characteristic impedance of transmission line is 2309.6Ω at a frequency of 800 MHz . At this frequency the propagation constant is $0.054(0.0366+\mathrm{j} 0.99)$. Determine R.
Option A:	5.56Ω
Option B:	6.56Ω
Option C:	8.56Ω
Option D:	7.56Ω
14.	A 100Ω microstrip line is connected to 75Ω line. Determine SWR.
Option A:	1.33
Option B:	2.5
Option C:	0.36
Option D:	0.75
15.	An open wire telephone line has $\mathrm{R}=10 \Omega / \mathrm{km}, \mathrm{L}=0.0038 \mathrm{H} / \mathrm{km}, \mathrm{C}=$ $0.0088^{*} 10^{\wedge}-6 \mathrm{~F} / \mathrm{km}$ and $\mathrm{G}=0.45^{*} 10^{\wedge}-6$. Determine characteristic impedance $\left(\mathrm{Z}_{0}\right)$.
Option A:	$674<35.37$
Option B:	$674<-35.37$
Option C:	$74<35.37$
Option D:	$574<35.37$
16.	Find the Maxwell equation derived from Faraday's law.
Option A:	$\operatorname{Div}(\mathrm{H})=\mathrm{J}$
Option B:	$\operatorname{Div}(\mathrm{D})=\mathrm{I}$
Option C:	Curl(E) $=-\mathrm{dB} / \mathrm{dt}$
Option D:	Curl(B) $=-\mathrm{dH} / \mathrm{dt}$
Q17.	Find the charge density when the electric flux density is given by $2 \mathrm{xi}+$ $3 y j+4 z k$.
Option A:	10
Option B:	9
Option C:	24
Option D:	0
18.	What is the type of quantizer, if a Zero is assigned a quantization level?
Option A:	Midrise type
Option B:	Mid tread type
Option C:	Mistreat type
Option D:	None of the mentioned
19	Graphene consists...
Option A:	entirely of carbon
Option B:	of 80% carbon and 20% silicon
Option C:	of 80\% carbon, 10% silicon and 10% unidentified yet
Option D:	of 80% carbon, 20% unidentified yet

20	Typically, all ESD sensitive (ESDS) items should be handled:
Option A:	Only when room ionization is utilized
Option B:	Only at an ESD control workstation
Option C:	ESDS items should never be handled
Option D:	ESDS items should be handled
Q25.	The principle of dynamically induced emf is utilized in a
Option A:	choke.
Option B:	generator.
Option C:	Transformer.
Option D:	Thermocouple.

Q. 2 Answer any two of the following

Marks [20]

1. Find the volume charge density ρv at $(1,2,3)$ if in free space $V=50 x^{2} y z+20 y^{2} V$.
2. Show that same work is done in moving a $5 \mu \mathrm{C}$ charge from origin to $\mathrm{P}(2,-1,4)$ through field $\mathbf{E}=2 x y z \mathbf{a x}+x^{2} z \mathbf{a y}+x^{2} y$ az V / m through the path
i) Straight line segment origin to $(2,0,0)$ to $(2,-1,0)$ to $(2,-1,4)$.
ii) straight line $x=-2 y, z=2 x$.
3. Explain any two applications of electromagnetics.

Q. 3 Answer any two of the following

1) Magnetic field component of an EM wave propagating through a non- magnetic medium $\left(\mu=\mu_{0}\right) \quad$ is:
$\mathrm{H}=25 \sin \left(2 \quad 10^{8}+6 \mathrm{x}\right) \mathrm{a}_{\mathrm{y}} \mathrm{mwb} / \mathrm{m}$
Determine i) The direction of propagation
i) The permittivity
ii) Electric Field
2) State and explain any two of the Maxwell's Identities
3) Derive wave equation in free space.
