Program: _____ Curriculum Scheme: Rev2016 Examination: TE Semester V Course Code: CSDLO5013 and Course Name: Advance Algorithms

Time: 2 hour

Max. Marks: 80

Q1.	def f()
	ans = 0 for i = 1 to n: for j = 1 to log(i): ans += 1 print(ans)
	What is the time Complexity of this program:
Option A:	O(n)
Option B:	O(nlogn)
Option C:	O(n2)
Option D:	O(n3)
Q2.	How is time complexity measured?
Option A:	By counting the number of statements in an algorithm
Option B:	By counting the number of primitive operations performed by the algorithm on a given input size
Option C:	By counting the size of data input to the algorithm
Option D:	By counting the size of file.
Q3.	To verify whether a function grows faster or slower than the other function, we cannot use
Option A:	Big Omega Ω (f)
Option B:	Big Theta θ (f)
Option C:	Big Oh O (f)
Option D:	Small Oh o (f)

Q4.	We toss two faircoins simultaneously and independently. If the outcomes of the				
	twocoins are the same, we win ;otherwise, we lose. Let A be the event that the				
	C be the event that we win. Which of the following statements is false?				
Oution As	E de the event that we will, which of the following statements is faise?				
Option A:	Events A and C are independent.				
Option B:	Events A and B are not independent				
Option C:	Events A and B are not conditionally independent given C				
Option D:	The probability of winning is 1/2.				
Q5.	The random variables X and Y have variances 0.2 and 0.5 respectively. Let $Z=$ 5X-2Y. The variance of Z is?				
Option A:	3				
Option B:	4				
Option C:	5				
Option D:	7				
Q6.	The number of black nodes from the root to a node is the node's; the				
	uniform number of black nodes in all paths from root to the leaves is called the of the red_black tree.				
Option A:	red height, red depth				
Option B:	red depth, red height				
Option C:	C) black depth, black height				
Option D:	D) black height, black depth				
Q7.	In a Red-Black Tree, if a node is red, its child must be				
Option A:	Sometimes Red				
Option B:	Always Black				
Option C:	Always Red				
Option D:	Sometimes Black				
Q8.	which one is not right about the red_black tree?				
Option A:	red_black tree is a binary search tree.				

Option B:	In the average case, the time complexity of searching one member of the
	red_black tree is O(logn).
Option C:	In the average case, the time complexity of inserting one member into the
	red_black tree is O(logn).
Option D:	An AVL tree is better than a red_black tree with same data memebers in
	searching, insert and so on.
Q9.	The number of trees in a binomial heap with n nodes is
Option A:	logn
Option B:	n
Option D:	
Option C:	1N/2
Option D:	Nlogn
Q10.	The main distinguishable characterstic of a binomial heap from a binary heap is
	that
Option A:	it allows union operations very efficiently
Option A:	it allows union operations very efficiently
Option A: Option B:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary
Option A: Option B:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap
Option A: Option B:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap
Option A: Option B: Option C:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree
Option A: Option B: Option C:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree
Option A: Option B: Option C: Option D:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-
Option A: Option B: Option C: Option D:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4
Option A: Option B: Option C: Option D:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4
Option A: Option B: Option C: Option D:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binemial heap the next value is creater then left shild and less then right
Option A: Option B: Option C: Option D: Q11.	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child.
Option A: Option B: Option C: Option D: Q11.	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child.
Option A: Option B: Option C: Option D: Q11. Option A:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child. Always
Option A: Option B: Option C: Option D: Q11. Option A: Option B:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child. Always Never
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child. Always Never depends on value
Option A: Option B: Option C: Option D: Q11. Option A: Option B: Option C: Option D:	it allows union operations very efficiently it does not allow union operations that could easily be implemented in binary heap the heap structure is not similar to complete binary tree the location of child node is not fixed i.e child nodes could be at level (h-2) or (h-3), where h is height of heap and h>4 In a binomial heap the root value is greater than left child and less than right child. Always Never depends on value Sometimes

Q12.	Which algorithm is used to solve a maximum flow problem?
Option A:	Prim's algorithm
Option B:	Kruskal's algorithm
Option C:	Dijkstra's algorithm
Option D:	Ford-Fulkerson algorithm
Q13.	A simple acyclic path between source and sink which pass through only positive weighted edges is called?
Option A:	augmenting path
Option B:	critical path
Option C:	residual path
Option D:	maximum path
Q14.	Which of the following is the correct type of spectrum of the bipartite graph?
Option A:	Symmetric
Option B:	Anti – Symmetric
Option C:	Circular
Option D:	Exponential
Q15.	Which approach is based on computing the distance between each pair of distinct points and finding a pair with the smallest distance?
Option A:	Brute force

Option B:	Exhaustive search
Option C:	Divide and conquer
Option D:	Branch and bound
Q16.	is a method of constructing a smallest polygon out of n given points
Option A:	closest pair problem
Option B:	quick hull problem
Option C:	path compression
Option D:	union-by-rank
Q17.	Problems that can be solved in polynomial time are known as?
Option A:	intractable
Option B:	tractable
Option C:	decision
Option D:	complete
Q18.	Which of the following problems is not NP complete?
Option A:	Hamiltonian circuit
Option B:	Bin packing
Option C:	Partition problem

Option D:	Halting problem		
Q19.	The choice of polynomial class has led to the development of an extensive theory		
	called		
Option A:	computational complexity		
Option B:	time complexity		
Option C:	problem complexity		
Option D:	decision complexity		
Q20.	o which class does the Vertex Cover problem belong?		
Option A:	P class		
Option B:	NP class		
Option C:	Partition class		
Option D:	Complete class		

Q2 and Q3.	Please delete the instruction shown in front of every sub question	
(20 Marks Each)		
А	Solve any Two	5 marks each
i.	What is convex hull? Explain Jarvis' march in detail.	
ii.	Explain delete operations in red black tree.	
iii.	Write a note on amortized analysis.	
В	Solve any One	10 marks
	each	
i.	Write a note on line segment properties.	
ii.	Write a note on bipartite matching.	