Program: \qquad
Curriculum Scheme: Rev2016
Examination: TE Semester V
Course Code: CSDLO5013 and Course Name: Advance Algorithms
Time: 2 hour

Q1.	$\operatorname{def} f()$ $\begin{aligned} & \text { ans }=0 \\ & \text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { : } \\ & \quad \text { for } \mathrm{j}=1 \text { to } \log (\mathrm{i}) \text { : } \\ & \quad \text { ans }+=1 \\ & \text { print(ans) } \end{aligned}$ What is the time Complexity of this program:
Option A:	$\mathrm{O}(\mathrm{n})$
Option B:	O(nlogn)
Option C:	O(n2)
Option D:	O(n3)
Q2.	How is time complexity measured?
Option A:	By counting the number of statements in an algorithm
Option B:	By counting the number of primitive operations performed by the algorithm on a given input size
Option C:	By counting the size of data input to the algorithm
Option D:	By counting the size of file.
Q3.	To verify whether a function grows faster or slower than the other function, we cannot use \qquad notations.
Option A:	Big Omega Ω (f)
Option B:	Big Theta θ (f)
Option C:	Big Oh O (f)
Option D:	Small Oh 0 (f)

Q4.	We toss two faircoins simultaneously and independently. If the outcomes of the twocoins are the same, we win ;otherwise, we lose. Let A be the event that the first coin comes upheads, B be the event that the second coin comes upheads, and C be the event that we win. Which of the following statements is false?
Option A:	Events A and C are independent.
Option B:	Events A and B are not independent
Option C:	Events A and B are not conditionallyindependent given C
Option D:	The probability of winning is $1 / 2$.
Q5.	The random variables X and Y have variances 0.2 and 0.5 respectively. Let $\mathrm{Z}=$ $5 \mathrm{X}-2 \mathrm{Y}$. The variance of Z is?
Option A:	3
Option B:	4
Option C:	5
Option D:	7
Q6.	The number of black nodes from the root to a node is the node's \qquad ; the uniform number of black nodes in all paths from root to the leaves is called the \qquad of the red-black tree.
Option A:	red height, red depth
Option B:	red depth, red height
Option C:	C) black depth, black height
Option D:	D) black height, black depth
Q7.	In a Red-Black Tree, if a node is red, its child must be
Option A:	Sometimes Red
Option B:	Always Black
Option C:	Always Red
Option D:	Sometimes Black
Q8.	which one is not right about the red_black tree?
Option A:	red_black tree is a binary search tree.

Option B:	In the average case, the time complexity of searching one member of the red_black tree is O(logn).
Option C:	In the average case, the time complexity of inserting one member into the red_black tree is O(logn).
Option D:	An AVL tree is better than a red_black tree with same data memebers in searching, insert and so on.
Q9.	The number of trees in a binomial heap with n nodes is
Option A:	$\log n$
Option B:	n
Option C:	N/2
Option D:	Nlogn
Q10.	The main distinguishable characterstic of a binomial heap from a binary heap is that
Option A:	it allows union operations very efficiently
Option B:	it does not allow union operations that could easily be implemented in binary heap
Option C:	the heap structure is not similar to complete binary tree
Option D:	the location of child node is not fixed i.e child nodes could be at level (h-2) or (h3), where h is height of heap and $h>4$
Q11.	In a binomial heap the root value is greater than left child and less than right child.
Option A:	Always
Option B:	Never
Option C:	depends on value
Option D:	Sometimes

Q12.	Which algorithm is used to solve a maximum flow problem?
Option A:	Prim's algorithm
Option B:	Kruskal's algorithm
Option C:	Dijkstra's algorithm
Option D:	Ford-Fulkerson algorithm
Q13.	A simple acyclic path between source and sink which pass through only positive weighted edges is called?
Option A:	augmenting path
Option B:	critical path
Option C:	residual path
Option D:	maximum path
Q14.	Which of the following is the correct type of spectrum of the bipartite graph?
Option A:	Symmetric
Option B:	Anti - Symmetric
Option C:	Circular
Option D:	Exponential
Q15.	Which approach is based on computing the distance between each pair of distinct points and finding a pair with the smallest distance?
Option A:	Brute force

Option B:	Exhaustive search
Option C:	Divide and conquer
Option D:	Branch and bound
Q16.	\qquad is a method of constructing a smallest polygon out of n given points
Option A:	closest pair problem
Option B:	quick hull problem
Option C:	path compression
Option D:	union-by-rank
Q17.	Problems that can be solved in polynomial time are known as?
Option A:	intractable
Option B:	tractable
Option C:	decision
Option D:	complete
Q18.	Which of the following problems is not NP complete?
Option A:	Hamiltonian circuit
Option B:	Bin packing
Option C:	Partition problem

Option D:	Halting problem	
		The choice of polynomial class has led to the development of an extensive theory called __
Q19.	computational complexity	
Option A:		
Option B:	time complexity	
Option C:	problem complexity	class
Option D:	decision complexity	
Q20.	o which class does the Vertex Cover problem belong?	
Option A:	P class	
Option B:	NP	
Option C:	Partition	
Option D:	Complete class	

Q2 and Q3. (20 Marks Each)	Please delete the instruction shown in front of every sub question	
A	Solve any Two	
i.	What is convex hull? Explain Jarvis' march in detail.	
ii.	Explain delete operations in red black tree.	
iii.	Write a note on amortized analysis.	
B	Solve any One each	
i.	Write a note on line segment properties.	
ii.	Write a note on bipartite matching.	

