Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	number of clock cycles are required to process 200 tasks in a six-segment
pipeline.	

12.	Memory address of direct cache mapping with main memory 64 K words, cache memory 2 K words, block size 16 words have \qquad , and \qquad of TAG, LINE and WORD fields, respectively.
Option A:	7, 4, and 5 bits
Option B:	4,5 , and 7 bits
Option C:	5, 4, and 7 bits
Option D:	5,7 , and 4 bits
13.	How many two input AND gates and two input OR gates are required to realize Y $=\mathrm{BD}+\mathrm{CE}+\mathrm{AB}$?
Option A:	3,2
Option B:	2,3
Option C:	3, 3
Option D:	2, 2
14.	When the processor receives the request from a device, it responds by sending \qquad .
Option A:	Acknowledge signal
Option B:	BUS grant signal
Option C:	Response signal
Option D:	None of the mentioned
15.	Exclusive-OR (XOR) logic gates can be constructed from what other logic gates?
Option A:	OR gates only
Option B:	AND gates and NOT gates
Option C:	AND gates, OR gates, and NOT gates
Option D:	OR gates and NOT gates
16.	The disadvantage of the hardwired approach is
Option A:	It is very flexible
Option B:	It cannot be used for complex instructions
Option C:	It is costly
Option D:	less flexible \& cannot be used for complex instructions
17.	The canonical sum of product form of the function $\mathrm{y}(\mathrm{A}, \mathrm{B})=\mathrm{A}+\mathrm{B}$ is
Option A:	$\mathrm{AB}+\mathrm{BB}+\mathrm{A}^{\prime} \mathrm{A}$
Option B:	$\mathrm{AB}+\mathrm{AB}{ }^{\prime}+\mathrm{A}^{\prime} \mathrm{B}$
Option C:	$\mathrm{BA}^{+}+\mathrm{BA}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
Option D:	$\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime}$
18.	If the control memory has 128 bits, then the size of address field in microinstruction format is \qquad bits.
Option A:	8
Option B:	7
Option C:	6
Option D:	5
19.	$\begin{aligned} & \hline \text { MAR } \leftarrow(\mathrm{PC}) \\ & \text { MDR } \leftarrow \text { Memory } \end{aligned}$

	PC $\leftarrow(\mathrm{PC})+1$ $\mathrm{IR} \leftarrow(\mathrm{MDR})$ This is the sequence of micro-operations in Option A: fetch cycle
Option B:	execute cycle
Option C:	interrupt cycle
Option D:	indirect cycle
20.	Complement of the expression A'B + CD' is
Option A:	$\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option B:	$\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option C:	$\left(\mathrm{A}^{\prime}+\mathrm{B}\right)\left(\mathrm{C}^{\prime}+\mathrm{D}\right)$
Option D:	$\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{C}+\mathrm{D}^{\prime}\right)$

Q2	Solve any Two Questions out of Three 10 mark each
A	Explain different technique for design of control unit of computer.
B	Design 4-bit BCD adder using IC 7483.
C	What is micro program? Write microprogram for following operations I. ADD R1, M, Register R1 and Memory location M are added and result store at Register R1. II. MUL R1, R2 Register R1 and Register R2 are multiplied and result store at Register R1.

Q3	
A	Solve any Two
i.	Simplify A+A'B+A'B'C+A'B'C'D using Boolean laws.
ii.	Explain memory interleaving Techniques.
iii.	Explain IEEE 754 floating point representation formats and represent $(34.25) 10$ to single precision format.
B	Solve any One
i.	Realize the operation using only NAND gates. F (A, B, C, D) $=\pi$ M $(0,2,3,6,7,8,9,12,13)$
ii.	Consider a pipeline having 4 phases with duration 60, 50, 90 and 80 ns. Given latch delay is 10 ns. Calculate- $1 . \quad$Pipeline cycle time Non-pipeline execution time 2. 3. Speed up ratio Pipeline time for 1000 tasks 4.

