Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	In Liang-Barsky algorithm, when $\mathrm{pk}<0$, then the line is
Option A:	parallel to the boundaries
Option B:	exceeding the boundaries
Option C:	bounded inside the boundaries
Option D:	bounded outside the boundaries
2.	The given polygon is
Option A:	concave polygon
Option B:	convex polygon
Option C:	not convex not concave
Option D:	trapezoid
3.	To model water, clouds, and terrain, ___ fractals are commonly used.
Option A:	self-similar
Option B:	self-affine
Option C:	invariant
Option D:	variant
4.	In 3D transformation if the object is rotated counterclockwise 45^{0} about x -axis, what will be the rotation matrix? $\begin{array}{ll} \text { a) }\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 0 & -1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] & \text { b) }\left[\begin{array}{cccc} 1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\ -1 / \sqrt{2} & 1 / \sqrt{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \\ \text { c)}\left[\begin{array}{ccccc} 1 / \sqrt{2} & 0 & 1 / \sqrt{2} & 0 \\ 0 & 1 & 0 & 0 \\ -1 / \sqrt{2} & 0 & 1 / \sqrt{2} & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] & \text { d) }\left[\begin{array}{cccc} 1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \end{array}\right] \end{array}$
Option A:	a
Option B:	b
Option C:	c
Option D:	d
5.	, is not an advantage of Direct View Storage Tubes.

Option A:	Refreshing of CRT is not required
Option B:	Very complex pictures can be displayed at very high resolution without flicker
Option C:	It has a flat screen
Option D:	Selective or part erasing of screen is not possible
6.	If we construct the Bezier curve of order 3 and with 4 polygon vertices A (2, 2), B $(3,3), \mathrm{C}(4,4), \mathrm{D}(5,5)$ from its equation $\mathrm{P}(\mathrm{u})$ and consider $\mathrm{u}=0,1 / 4,1 / 2,3 / 4$, then $P(1 / 4)$ is \qquad
Option A:	(4.75, 4.75)
Option B:	(3.75, 3.75)
Option C:	(2.75, 2.75)
Option D:	(1.75, 1.75)
7.	In 3D-clipping, if we assign the bit positions in the region code from right to left as B6 B5 B4 B3 B2 B1, then a region code of \qquad identifies a point as above and behind the view volume.
Option A:	010000
Option B:	011000
Option C:	100010
Option D:	101000
8.	What is the effect of weighted area sampling on adjacent pixels?
Option A:	Intensity is increased
Option B:	Intensity is decreased
Option C:	Contrast is increased
Option D:	Contrast is decreased
9.	Line $A B$ with $A(2,2)$ and $B(12,9)$. In Cohen-Sutherland line clipping \qquad \& \qquad are the region codes (B4 B3 B2 B1) for A and B.
Option A:	0000, 0101
Option B:	1010, 0000
Option C:	1010, 0101
Option D:	0101, 1010
10.	What is the disadvantage of the light pen?
Option A:	Shape
Option B:	They cannot detect positions
Option C:	Accurate reading
Option D:	Cannot detect positions within black areas
11.	We control the location of a scaled object by choosing the position is known as __.
Option A:	Pivot point
Option B:	Fixed point
Option C:	Differential scaling
Option D:	Uniform scaling
12.	Any convenient co-ordinate system or Cartesian co-ordinates which can be used to define the picture is called \qquad
Option A:	spherical co-ordinates

Option B:	vector co-ordinates
Option C:	viewport co-ordinates
Option D:	world co-ordinates
13.	If two pure reflections about a line passing through the origin are applied successively the result is \qquad .
Option A:	Pure rotation
Option B:	Quarter rotation
Option C:	Half rotation
Option D:	True reflection
14.	For a given polygon and clipping window shown, \qquad is the list of vertices after left boundary clipping in Sutherland-Hodgeman algorithm.
Option A:	I1, P2, P3, P4, I2
Option B:	P1, I1, P3, P4, I2
Option C:	11, P2, P3, P4
Option D:	I1, P2, P4, I2
15.	If the scaling factors values sx and sy are assigned to unequal values, then
Option A:	Uniform rotation is produced
Option B:	Uniform scaling is produced
Option C:	Differential scaling is produced
Option D:	Scaling cannot be done
16.	The Z-buffer algorithm is usually implemented in the \qquad , so that z -values range from 0 at the black clipping plane to 1 at the front clipping plane.
Option A:	world coordinates
Option B:	normalized coordinates
Option C:	physical coordinates
Option D:	viewing coordinates
17.	The two-dimensional scaling equation in the matrix form is
Option A:	$\mathrm{P}^{\prime}=\mathrm{P}+\mathrm{T}$
Option B:	$\mathrm{P}^{\prime}=\mathrm{S}^{*} \mathrm{P}$
Option C:	$\mathrm{P}=\mathrm{P} * \mathrm{R}$
Option D:	$\mathrm{P}^{\prime}=\mathrm{R}+\mathrm{S}$
18.	In Koch curve repetition increases the length of the curve by

Option A:	factor 3/4
Option B:	factor $3 / 5$
Option C:	factor $4 / 5$
Option D:	factor $4 / 3$
19.	In Bezier curve, the degree of the polynomial defining the curve segment is \qquad less than the number of defining polygon point.
Option A:	one
Option B:	two
Option C:	three
Option D:	four
20.	The transformation matrix for the appropriate 2D transformation which reflects a figure in point $(0.5,0.5)$ can be given as \qquad A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right]$ 8) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$ c) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ D) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
Option A:	A
Option B:	B
Option C:	C
Option D:	D

Q2	Solve any Two Questions out of Three 10 mark each
A	Derive midpoint-circle drawing algorithm, using the same, plot the circle whose radius is 10 units and center is (2,2).
B	Explain scan line polygon fill algorithm with suitable example.
C	Use Liang-Barsky line clipping algorithm to clip the line segment AB against the window. Line coordinates are A(1, 7), B(9, 8) and lower left corner of the window is $(1,2)$ and upper right corner is $(7,6)$.

Q3	
A	Solve any Two
i.	Compare boundary-fill and flood-fill algorithm.
ii.	Prove that 2D rotation and scaling commute if $S_{x}=S_{y}$.
iii.	What is the purpose of inside-outside/ even-odd test? Explain with example.
B	Solve any One
i.	Explain the Z-buffer algorithm for hidden surface removal
ii.	Find the clipping coordinates to clip the line segment AB against the window using Cohen-Sutherland line clipping algorithm. Given $A(30,40)$, B (80, 90) and $\left(X_{w m i n}, Y_{\text {wmin }}\right)=(50,20),\left(X_{\text {wmax }}, Y_{\text {wmax }}\right)=(90,50)$.

