University of Mumbai

Examination 2020 under cluster __(Lead College: _____)

Program: **Computer Engineering** Curriculum Scheme: Rev 2016

Examination: BE Semester VII

Course Code: CSDLO7033 and Course Name: Robotics

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Which of the following joints have one degree of freedom	
Option A:	Cylindrical	
Option B:	Ball and Socket	
Option C:	Prismatic	
Option D:	Twist	
2.	Teach pendant is used for	
Option A:	manual teaching	
Option B:	lead-through teaching	
Option C:	off-line teaching	
Option D:	robot programming	
option D.		
3.	Identify the applications for which a point to point robot is suitable *	
Option A:	Spot welding	
Option B:	Spray painting	
Option C:	Loading and unloading	
Option D:	Arc welding	
4.	Rotation of a 3-D object can be represented in 3-D space using	
Option A:	4×4 matrix	
Option B:	3×3 matrix	
Option C:	5×5 matrix	
Option D:	6×6 matrix	
5.	Inverse Kinematics of a manipulator aims to determine	
Option A:	position and orientation of the end- effector with respect to its base coordinate	
	system	
Option B:	joint angles for the known position and orientation of the end-effector with	
	respect to its base coordinate system	
Option C:	joint forces/torques of the manipulator	
Option D:	a collision-free path for it	
6.	Forward Kinematics of a manipulator aims to determine	
Option A:	position and orientation of the end- effector with respect to its base coordinate	
Option A:	system	
Option B:	joint angles for the known position and orientation of the end-effector with	
-	respect to its base coordinate system	

Option C:	joint forces/torques of the manipulator			
Option D:	a collision-free path for it			
Option D.				
7.	The position of end-effector of a robot with respect to its base coordinate system			
7.	can be represented in			
Ontion A.	Ĩ			
Option A:	Roll, Pitch and Yaw angles			
Option B:	Euler angles			
Option C:	the form of three vectors in cartesian coordinate system			
Option D:	Cylindrical coordinate system			
0	The measure of anoticl receivtion with which the tool tin ear he releved within the			
8.	The measure of spatial resolution with which the tool tip can be placed within the			
Ontion A.	work envelope of a robot is termed as			
Option A:	repeatability			
Option B:	accuracy precision			
Option C:				
Option D:	absolute error			
9.	Identify the applications for which a continuous motion robot is suitable			
Option A:	Spot welding			
Option B:	Spray painting			
Option C:	Loading and unloading			
Option D:	Arc welding			
10.	In screw transformation, what is the screw pitch for pure translation			
Option A:	0			
Option B:	infinity			
Option C:	+1			
Option D:	-1			
11.	A 5x8 binary image is as shown below:			
	Calculate the number of bytes required to store the Run Length Encode			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Ontion A.				
Option A:	40			
Option B:	4			
Option C:	5			
Option D:	8			
12.	A 3x3 binary image is as shown below:			
	1 0 0			
	0 1 0			
	The centroid of the image is located at			
Ontion A:	(1 1)			
Option A:	(1,1)			
Option B:	(1,2)			

Option C:	(2,1)
Option D:	(2,2)
13.	A 3x3 binary image is as shown below:
	1 0 0
	It is scaled in x direction be 2. What will be resultant scaled image
Option A:	
-	1 1 0 0 0 0
	0 0 1 1 0 0
	0 0 0 0 1 1
Option B:	
	0 1 0
	0 1 0
	0 0 1
Option C:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Option D:	
opuon 21	
	0 1 0
	1 0 0
14.	A 3x3 binary image is as shown below:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	It is translated in x direction be 2 What will be resultant scaled image
	it is translated in a direction of 2 what will be resultant scaled image
Option A:	
	1 1 0 0 0 0
	0 0 1 1 0 0
	0 0 0 0 1 1
Option B:	
	1 0 0
	0 1 0

	0 0 1
Option C:	
	0 0 0
	0 1 0
Option D:	
15.	Calculate the controid of the image
13.	Calculate the centroid of the image11000
Option A:	(2,2)
Option B:	(4,4)
Option C:	(4,2)
Option D:	(2,4)
1.6	
16.	A grey scale image of size $(4x4)$ is as shown below
	0 0 5 0
	0 4 0 6
	<u>Try to locate a diamond whose size is $(3x3)$ by template matching techniques.</u>
1	
	$\begin{bmatrix} 0 & 4 & 0 \end{bmatrix}$ Using performance index method find the position at which the best match occurs
Option A:	
Option A: Option B:	Using performance index method find the position at which the best match occurs
Option B:	Using performance index method find the position at which the best match occurs (0,0)
	Using performance index method find the position at which the best match occurs (0,0) (1,0)
Option B: Option C:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1)
Option B: Option C:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1)
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1)
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 0 5 0
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 4 0 6 1 0 5 0
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 4 0 6 1 0 5 0 Try to locate a diamond whose size is (3x3) by template matching techniques.
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 4 0 6 1 0 5 0 Try to locate a diamond whose size is (3x3) by template matching techniques. 0 4 0
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 0 5 0 0 4 0 6 1 0 5 0 Try to locate a diamond whose size is (3x3) by template matching techniques. 0 4 0 3 0 5
Option B: Option C: Option D:	Using performance index method find the position at which the best match occurs (0,0) (1,0) (0,1) (1,1) A grey scale image of size (4x4) is as shown below 2 1 0 0 0 4 0 6 1 0 5 0 Try to locate a diamond whose size is (3x3) by template matching techniques. 0 4 0

Option A: 0. Option B: 0	0167
	8167
Option D. 0	
Option C: 0.	9994
Option D:	0.992
	1 1 1 0 1 0 0 1 0 1 1 0
	$=[1,3,4,4,5,7,0,0]^{\mathrm{T}}$
Option B:	$a = [3, 4, 4, 5, 7, 0, 0, 1]^{T}$
Option C:	$a = [0,3,4,4,5,7,0,1]^{T}$
Option D: a=	$=[1,3,4,4,5,7,0,0]^{\mathrm{T}}$
in b	he trajectory between points w^0 and w^1 is to be approximated using linear iterpolation $w(t) = at + b$ over the interval [0 T]. Find the expression for a and
Option A: a	$u = \frac{w^0 - w^1}{T}, \ b = w^1$
Option B:	$ \begin{array}{l} a = \frac{w^{0} - w^{1}}{T}, \ b = w^{1} \\ \hline a = \frac{w^{0} - w^{1}}{T}, \ b = w^{0} \\ \hline a = \frac{w^{1} - w^{0}}{T}, \ b = w^{0} \\ \hline a = \frac{w^{1} - w^{0}}{T}, \ b = w^{1} \end{array} $
Option C:	$a = \frac{w^1 - w^0}{T}, \ b = w^0$
Option D: a	$u = \frac{w^1 - w^0}{T}, \ b = w^1$
in	he trajectory between points w^0 and w^1 is to be approximated using linear atterpolation $w(t) = at + b$ over the interval [0 T]. What can we say about the elocity v(t) and acceleration a(t)
Option A: v	u(t) = a, a(t) = 0
Option B: v	u(t) = 0, a(t) = 0
Option C: v((t)=a, a(t)=constant
Option D: v	u(t) = a, a(t) = at

Q2	Write a short note on (any four Questions out of six 05 marks each)
A	Sensors and actuators
В	Fuzzification and defuzzification
C	Tangent Bug Algorithm
D	Reactive Paradigm
E	Robotic Manipulator SCARA
F	Applications of Robots

Q3	Solve any Two Questions out of Three 10 marks each
•	A point $p(7,3,1)^{T}$ is attached to the frame F_{noa} and is subjected to following
A	transformations, Find the coordinate of the point relative to the reference

	frame at the conclusion of transformation i. Rotation of 90 deg about the z-axes ii. Followed by rotation of 90 deg about y axis iii. Followed by translation of [43,7]
В	Explain the steps to implement an expert system in detail
С	Explain different Image Representation Techniques in detail