University of Mumbai

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: Computer Engineering Curriculum Scheme: Rev2016 Examination: TE Semester V

Course Code: CSC504 and Course Name: Theory of Computer Science

Time: 2 hour Max. Marks: 80

Choose the correct option for following questions. All the Questions are compulsory **Q1.** and carry equal marks 1. Figure shows finite automata which accepts only those strings Optio which start with 1 and ends with 0 n A: Optio which contains only input 101 n B: which start with 1 and ends with 1 Optio n C: which start with **E** and ends with 1 Optio n D: 2. Figure shows finite automata which accepts 0

I				
Optio n A:	odd number of 1's and any number of 0's.			
Optio n B:	odd number of 0's and any number of 1's.			
Optio n C:	even number of 1's and any number of 0's.			
Optio n D:	odd number of 0's and even number of 1's.			
3.	Figure shows finite automata which checks			
	q_0 q_1 q_2 q_3			
Optio n A:	whether the given unary number is divisible by 3			
Optio n B:	whether the given unary number is divisible by 2			
Optio n C:	whether the given unary number is divisible by 4			
Optio n D:	whether the given unary number is divisible by 0			
4.	Figure shows finite automata which accepts			
Optio n A:	Even number of 0's and odd number of 1's			

Optio n B:	Odd number of 0's and even number of 1's
Optio n C:	Even number of 0's and even number of 1's
Optio n D:	Odd number of 0's and odd number of 1's
5.	Following NFA with & represents language consisting
	Start Q_0 ε Q_2
Optio n A:	The strings of any number of a's followed by any number of b's followed by any number of c's
Optio n B:	The strings of any number of a's followed by any number of E, followed by any number of c's
Optio n C:	The strings of any number of a's followed by any number of b's followed by any number of E
Optio n D:	The strings of any number of £ followed by any number of b's followed by any number of c's
6.	E-closures of q ₀ ,q ₁ and q ₂ are obtained asfor following NFA with E
	→@³→@°
Optio n A:	$\text{E-closure}(q_0) = \{ q_0 \}, \text{E-closure}(q_1) = \{ q_1, q_2 \}, \text{E-closure}(q_2) = \{ q_2 \}$
Optio n B:	$\text{E-closure}(q_0) = \{ q_0, q_1 \}, \text{E-closure}(q_1) = \{ q_1, q_2 \}, \text{E-closure}(q_2) = \{ q_2 \}$

Optio n C:	$\text{$\epsilon$-closure}(q_0)=\{\ q_0,\ q_1\},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Optio n D:	$\text{$E$-closure}(q_0) = \{ \ q_0 \}, \ E\text{-closure}(q_1) = \{ \ q_1 \}, \ E\text{-closure}(q_2) = \{ q_2 \}$
7.	Following DFA represents Language
	Start Q ₀ 0,1
Optio n A:	Containing any combination of 0 and 1
Optio n B:	Containing equal number of zeros and 1's
Optio n C:	Containing all the string except &
Optio n D:	Containing odd number of 0's and 1's
8.	Regular expression =0(00)* represents the language
8. Optio n A:	Regular expression =0(00)* represents the language having odd number of 0's
Optio	
Optio n A:	having odd number of 0's
Optio n A: Optio n B: Optio	having odd number of 0's having even number of 0's
Optio n A: Optio n B: Optio n C: Optio	having odd number of 0's having even number of 0's having equal number of 0's
Optio n A: Optio n B: Optio n C: Optio n D:	having odd number of 0's having even number of 0's having equal number of 0's having any number of 0's as well as empty string is the regular expression to denote the language L over the set ∑={a,b,c} such that every string will have atleast one a followed by
Optio n A: Optio n B: Optio n C: Optio n D:	having odd number of 0's having even number of 0's having equal number of 0's having any number of 0's as well as empty string is the regular expression to denote the language L over the set Σ={a,b,c} such that every string will have atleast one a followed by atleast one b followed by atleast one c

Ontio				
Optio n D:	* * •			
וו ט.	ab c			
10.	is R.E. for the language L which accepts all the strings with atleast			
	two b's over the set $\Sigma = \{a,b\}$			
0:4:-	two b 3 over the set Z={a,b}			
Optio	(a+b)* b (a+b)* b (a+b)*			
n A:				
Optio				
n B:	(a+b)* (a+b)* (a+b)*			
п Б.				
Optio				
n C:	(a+b) ⁺ (a+b)*(a+b) ⁺			
n c.				
Optio	(a+b) (a+b)*			
n D:				
11.	Production rules for the CFG for the language having any number of a's over the set			
11.				
	Σ={a}			
0 4:				
Optio	$S \rightarrow aS$ and $S \rightarrow E$			
n A:				
Optio	S o aS			
n B:				
Optio	S o a			
n C:				
Optio	$S\! o S$			
n D:				
12.	The rule for is Non terminal=one terminal.Any number of non-			
	terminals			
	terminals			
Ontic	CNE			
Optio	GNF			
n A:				
Optio	CNF			
n B:				
Optio	Simplified grammer			
n C:				
Optio	LBA			
n D:				
11 D.				
13.				
13.	Inwe can remove epsilon production, unit production and			
	useless symbol without changing the meaning.			
	and the meaning			
Optio				
n A:	Finite Automata			
пA.				

$ \begin{array}{lll} & & & & & & & & & & & & & & & & & &$		
Optio n D:		Context free grammer
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	n B:	Context free granifier
n D: Linear bounded automata 14. The grammar $S \rightarrow (S) \mid SS \mid \varepsilon$ is not suitable for predictive parsing because the grammar is Optio n A: Right recursive Optio n B: Optio n C: Optio n An operator grammar 15. is the instantaneous description to design PDA for accepting language		Turing machine
Optio n A: Right recursive Optio n B: Optio n B: Ambiguous n C: Optio n D: Is the instantaneous description to design PDA for accepting language I S		Linear bounded automata
$\begin{array}{ll} n \ A: & \text{Night recursive} \\ \text{Option B:} \\ \text{Option C:} \\ \text{Option D:} \\ \text{Option D:} \\ \text{In B:} \\ \\ \text{In B:} \\ \text{In B:} \\ \\ \text{In B:} \\ \text{In B:} \\ \\ \text{In B:} \\$	14.	The grammar S \rightarrow (S) SS ε is not suitable for predictive parsing because the grammar is
$ \begin{array}{ll} nB: \\ Optio \\ nC: \\ Optio \\ nD: \\ \hline \\ 15. \\ \hline \\ L=a^nb^{2n} \mid n \geq 1 \\ \hline \\ Optio \\ nA: \\ \hline \\ Optio \\ nB: \\ \hline \\ Optio \\ nC: \\ \hline \\ Optio \\ $	_	Right recursive
n C: Optio	-	Left recursive
n D:		Ambiguous
$ \begin{array}{c} \overline{ _{=a^{n}b^{2n} n \geq 1}} \\ \hline \\ Optio \\ n \ A: \\ \hline \\ \delta(q_{0}, a, a) = (q_{0}, aaa) \\ \delta(q_{0}, b, a) = (q_{1}, \epsilon) \\ \delta(q_{1}, b, a) = (q_{1}, \epsilon) \\ \delta(q_{1}, \epsilon, Z_{0}) = (q_{0}, aZ_{0}) \\ \hline \\ n \ B: \\ \hline \\ Optio \\ n \ C: \\ \hline \\ Optio \\ \delta(q_{0}, a, a) = (q_{0}, a) \\ \delta(q_{0}, a, a) = (q_{0}, a) \\ \delta(q_{0}, a, a) = (q_{0}, a) \\ \delta(q_{0}, b, a) = (q_{1}, b) \\ \delta(q_{1}, \epsilon, Z_{0}) = (q_{1}, a) \\ \delta(q_{1}, \epsilon, Z_{0}) = (q_{1}, ab) \\ \delta(q_{1}, b, a) = (q_{1}, ab) \\ \hline \\ \end{array}$		An operator grammar
$\begin{array}{ll} n \ A: & \delta(q_0,a_a) = (q_0,aaa) \\ \delta(q_0,b_a) = (q_1,E) \\ \delta(q_1,b_a) = (q_1,E) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \\ \hline Optio \\ n \ B: & \delta(q_0,a,Z_0) = (q_0,aZ_0) \\ \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,b_a) = (q_1,ba) \\ \delta(q_1,b_a) = (q_1,ab) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \hline \\ Optio \\ n \ C: & \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,b_a) = (q_1,b) \\ \delta(q_1,b_a) = (q_1,a) \\ \delta(q_1,E,Z_0) = (q_1,Z_0) \\ \hline \\ Optio \\ n \ D: & \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_1,ab) \\ \delta(q_0,b_0) = (q_1,ab) \\ \delta(q_0,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \hline \end{array}$	15.	
$\begin{array}{ll} n \ A: & \delta(q_0,a_a) = (q_0,aaa) \\ \delta(q_0,b_a) = (q_1,E) \\ \delta(q_1,b_a) = (q_1,E) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \\ \hline Optio \\ n \ B: & \delta(q_0,a,Z_0) = (q_0,aZ_0) \\ \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,b_a) = (q_1,ba) \\ \delta(q_1,b_a) = (q_1,ab) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \hline \\ Optio \\ n \ C: & \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,a_a) = (q_0,a) \\ \delta(q_0,b_a) = (q_1,b) \\ \delta(q_1,b_a) = (q_1,a) \\ \delta(q_1,E,Z_0) = (q_1,Z_0) \\ \hline \\ Optio \\ n \ D: & \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_0,a) \\ \delta(q_0,a_0) = (q_1,ab) \\ \delta(q_0,b_0) = (q_1,ab) \\ \delta(q_0,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \delta(q_1,b_0) = (q_1,ab) \\ \hline \end{array}$	Optio	$\delta(q_0.a.Z_0) = (q_0.aaZ_0)$
$\begin{array}{lll} & \delta(q_1,b,a) = (q_1,E) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \\ & Optio \\ n \ B: & \delta(q_0,a,Z_0) = (q_0,aZ_0) \\ \delta(q_0,a,a) = (q_0,a) \\ \delta(q_0,b,a) = (q_1,ba) \\ \delta(q_1,b,a) = (q_1,ab) \\ \delta(q_1,E,Z_0) = (q_2,E) \\ \\ & Optio \\ n \ C: & \delta(q_0,a,Z_0) = (q_0,a) \\ \delta(q_0,a,a) = (q_0,aa) \\ \delta(q_0,b,a) = (q_1,b) \\ \delta(q_1,b,a) = (q_1,a) \\ \delta(q_1,b,a) = (q_1,a) \\ \delta(q_1,E,Z_0) = (q_1,Z_0) \\ \\ & Optio \\ n \ D: & \delta(q_0,a,Z_0) = (q_0,a) \\ \delta(q_0,a,a) = (q_0,aa) \\ \delta(q_0,b,a) = (q_1,ab) \\ \delta(q_1,b,a) = (q_1,ab) \\ \delta(q_1,b,a) = (q_1,ab) \\ \end{array}$	_	$\delta(q_0,a,a) = (q_0,aaa)$
$\begin{array}{ll} \delta(q_{1},\xi,Z_{0})=(q_{2},\xi) \\ \\ Optio \\ n \ B: \\ \\ \delta(q_{0},a,Z_{0})=(q_{0},aZ_{0}) \\ \delta(q_{0},a,a)=(q_{0},a) \\ \delta(q_{0},b,a)=(q_{1},ba) \\ \delta(q_{1},b,a)=(q_{1},ab) \\ \delta(q_{1},\xi,Z_{0})=(q_{2},\xi) \\ \\ \\ Optio \\ n \ C: \\ \\ \\ \delta(q_{0},a,a)=(q_{0},aa) \\ \delta(q_{0},a,a)=(q_{1},a) \\ \delta(q_{1},b,a)=(q_{1},a) \\ \delta(q_{1},\xi,Z_{0})=(q_{1},Z_{0}) \\ \\ \\ Optio \\ n \ D: \\ \\ \\ \delta(q_{0},a,a)=(q_{0},aa) \\ \delta(q_{0},a,a)=(q_{0},aa) \\ \delta(q_{0},a,a)=(q_{0},aa) \\ \delta(q_{0},b,a)=(q_{1},ab) \\ \delta(q_{1},b,a)=(q_{1},ab) \\ \delta(q_{1},b,a)=(q_{1},ab) \\ \\ \end{array}$		
n B: $ \delta(q_0, a, a) = (q_0, a) $ $ \delta(q_0, b, a) = (q_1, ba) $ $ \delta(q_1, b, a) = (q_1, ab) $ $ \delta(q_1, \xi, Z_0) = (q_2, \xi) $ Optio $ n C: \qquad \delta(q_0, a, Z_0) = (q_0, a) $ $ \delta(q_0, a, a) = (q_0, aa) $ $ \delta(q_0, b, a) = (q_1, b) $ $ \delta(q_1, b, a) = (q_1, a) $ $ \delta(q_1, \xi, Z_0) = (q_1, Z_0) $ Optio $ n D: \qquad \delta(q_0, a, Z_0) = (q_0, aa) $ $ \delta(q_0, a, a) = (q_0, aa) $ $ \delta(q_0, b, a) = (q_1, ab) $ $ \delta(q_1, b, a) = (q_1, ab) $		
$\delta(q_{0},b,a) = (q_{1},ba)$ $\delta(q_{1},b,a) = (q_{1},ab)$ $\delta(q_{1},\xi,Z_{0}) = (q_{2},\xi)$ Optio n C: $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},b)$ $\delta(q_{1},b,a) = (q_{1},a)$ $\delta(q_{1},b,a) = (q_{1},a)$ $\delta(q_{1},\xi,Z_{0}) = (q_{0},aa)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},ab)$ $\delta(q_{1},b,a) = (q_{1},ab)$	-	
$\delta(q_{1},b,a) = (q_{1},ab)$ $\delta(q_{1},\xi,Z_{0}) = (q_{2},\xi)$ Optio $n C: \qquad \delta(q_{0},a,Z_{0}) = (q_{0},a)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},b)$ $\delta(q_{1},b,a) = (q_{1},a)$ $\delta(q_{1},\xi,Z_{0}) = (q_{1},Z_{0})$ Optio $n D: \qquad \delta(q_{0},a,Z_{0}) = (q_{0},a)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},ab)$ $\delta(q_{1},b,a) = (q_{1},ab)$	n B:	
Optio $\delta(q_{1}, \mathcal{E}, Z_{0}) = (q_{2}, \mathcal{E})$ Optio $\delta(q_{0}, a, Z_{0}) = (q_{0}, a)$ $\delta(q_{0}, a, a) = (q_{0}, aa)$ $\delta(q_{0}, b, a) = (q_{1}, b)$ $\delta(q_{1}, b, a) = (q_{1}, a)$ $\delta(q_{1}, \mathcal{E}, Z_{0}) = (q_{1}, Z_{0})$ Optio $\delta(q_{0}, a, Z_{0}) = (q_{0}, aa)$ $\delta(q_{0}, a, a) = (q_{0}, aa)$ $\delta(q_{0}, b, a) = (q_{1}, ab)$ $\delta(q_{1}, b, a) = (q_{1}, ab)$		
n C: $\delta(q_0,a,a) = (q_0,aa)$ $\delta(q_0,b,a) = (q_1,b)$ $\delta(q_1,b,a) = (q_1,a)$ $\delta(q_1,\xi,Z_0) = (q_1,Z_0)$ Optio n D: $\delta(q_0,a,Z_0) = (q_0,a)$ $\delta(q_0,a,a) = (q_0,aa)$ $\delta(q_0,b,a) = (q_1,ab)$ $\delta(q_1,b,a) = (q_1,ab)$		
$\delta(q_{0},b,a) = (q_{1},b)$ $\delta(q_{1},b,a) = (q_{1},a)$ $\delta(q_{1},E,Z_{0}) = (q_{1},Z_{0})$ Optio n D: $\delta(q_{0},a,Z_{0}) = (q_{0},a)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},ab)$ $\delta(q_{1},b,a) = (q_{1},ab)$	Optio	$\delta(q_0,a,Z_0) = (q_0,a)$
$\delta(q_{1},b,a) = (q_{1},a)$ $\delta(q_{1},\xi,Z_{0}) = (q_{1},Z_{0})$ Optio n D: $\delta(q_{0},a,Z_{0}) = (q_{0},a)$ $\delta(q_{0},a,a) = (q_{0},aa)$ $\delta(q_{0},b,a) = (q_{1},ab)$ $\delta(q_{1},b,a) = (q_{1},ab)$	n C:	
Optio Optio $\delta(q_0,a,Z_0) = (q_1,Z_0)$ Optio $\delta(q_0,a,Z_0) = (q_0,a)$ $\delta(q_0,a,a) = (q_0,aa)$ $\delta(q_0,b,a) = (q_1,ab)$ $\delta(q_1,b,a) = (q_1,ab)$		
Optio $\delta(q_0,a,Z_0) = (q_0,a)$ n D: $\delta(q_0,a,a) = (q_0,aa)$ $\delta(q_0,b,a) = (q_1,ab)$ $\delta(q_1,b,a) = (q_1,ab)$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n D: $\delta(q_0,a,a) = (q_0,aa)$ $\delta(q_0,b,a) = (q_1,ab)$ $\delta(q_1,b,a) = (q_1,ab)$		Ο(Υ1,C,Δ0 <i>)</i> - (Υ1, Δ0)
$\delta(q_0,b,a) = (q_1,ab)$ $\delta(q_1,b,a) = (q_1,ab)$	_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
$\delta(q_1,b,a)=(q_1,ab)$	n D:	
- (¬1, ν) - ν (1, ν - ν 1,		
		- (±/-/ / (±/)

16.	L=0 ^m 1 ⁿ 0 ^{m+n} can be constructed by using		
Optio	DFA		
n A: Optio n B:	NFA		
Optio n C:	PDA		
Optio n D:	Moore		
17.	Logic to construct turing machine for the language L=a ⁿ b ⁿ where n≥1 is		
Optio n A:	Convert a by A and then move ahead along the input tape and find out the b convert it to B. Repeat this process for all a's and b's		
Optio n B:	Convert b by B and then move ahead along the input tape and find out the a convert it to A.		
Optio n C:	Convert a by A and then move ahead along the input tape and find out the b convert it to B.		
Optio n D:	Convert all a's by A first and then convert all b's to B.		
18.	In the high level languages use of built the modularity in the program development process		
Optio n A:	Subroutines		
Optio n B:	Function		
Optio n C:	stack		
Optio n D:	code		
19.	Logic to construct TM for the addition function for the unary number system is ———————————————————————————————————		
Optio n A:	To simply replace + by 1 and move ahead right for searching end of the string and then we will convert last 1 to Δ .		

Optio n B:	To move ahead right for searching end of the string and then we will convert last 1 to Δ .
Optio n C:	To simply replace + by 1 and move ahead right for searching end of the string Δ .
Optio n D:	To move ahead right for searching end of the string.
20.	The undecidability of strings is determined with the help of
Optio n A:	Post correspondence theorem
Optio n B:	Rice theorem
Optio n C:	halting
Optio n D:	pre-correspondence theorem

Q2.	Solve any Four out of Six 5 marks each		
(20 Marks Each)			
A	Design a DFA to accept string of a's and b's ending with 'abb' over I/P $z=\{a,b\}$		
В	Design PDA for the language that accepts the strings with $n_a(w) < n_b(w)$ where w $\mathcal{E}(a+b)^*$		
C	Design a mealy machine to find 2's complement of a given binary number.		
D	Remove the \mathcal{E} production from following CFG by preserving meaning of it. S $\rightarrow XYX$ $X \rightarrow 0X \mid \mathcal{E}$ $Y \rightarrow 1Y \mid \mathcal{E}$		
Е	Construct Turing Machine for L=a ⁿ b ⁿ c ⁿ n≥1		
F	Write short note on Rice Theorem		

Q3.	Solve any Two Questions out of Three	10 marks each
(20 Marks Each)		

A	For the string ibtibtaea find i)Leftmost derivation ii) Right the above grammar is ambi	S a I the following ghtmost derivation	iii) Parse Tree iv) Check if
В	Convert the following NFA final states.	to DFA. P is the in 0 {p, r} {r, s} {p, s}	itial state and r and s are the
С	C Construct PDA for the grammar $ \stackrel{\leftarrow}{E} \rightarrow E + E \mid E - E \mid (E) \mid id $		