University of Mumbai
Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination: TE Semester V
Course Code: CSC504 and Course Name: Theory of Computer Science
Time: 2 hour
Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Figure shows finite automata which accepts only those strings
Optio	
n A:	

Optio $\mathrm{n} \mathrm{A:}$	odd number of 1's and any number of 0's.
Optio $\mathrm{n} \mathrm{B:}$	odd number of 0's and any number of 1's.
Optio $\mathrm{n} \mathrm{C:}$	even number of 1's and any number of 0's.
Optio $\mathrm{n} \mathrm{D:}$	odd number of 0's and even number of 1's.
3.	Figure shows finite automata which checks
Optio $\mathrm{n} \mathrm{A:}$	Even number of 0's and odd number of 1's
Optio	
n A:	

$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	Odd number of 0's and even number of 1's
$\begin{gathered} \text { Optio } \\ \text { n C: } \end{gathered}$	Even number of 0's and even number of 1's
$\begin{gathered} \text { Optio } \\ \text { n D: } \end{gathered}$	Odd number of 0's and odd number of 1's
5.	Following NFA with ε represents language consisting \qquad
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	The strings of any number of a's followed by any number of b's followed by any number of c's
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	The strings of any number of a's followed by any number of ε, followed by any number of c's
$\begin{gathered} \text { Optio } \\ \text { n C: } \end{gathered}$	The strings of any number of a's followed by any number of b's followed by any number of ε
$\begin{gathered} \text { Optio } \\ \text { n D: } \end{gathered}$	The strings of any number of ε followed by any number of b's followed by any number of c's
6.	ε-closures of q_{0}, q_{1} and q_{2} are obtained as \qquad for following NFA with ε
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	ε-closure $\left(q_{0}\right)=\left\{q_{0}\right\}, \varepsilon$-closure $\left(q_{1}\right)=\left\{q_{1}, q_{2}\right\}, \varepsilon$-closure $\left(q_{2}\right)=\left\{q_{2}\right\}$
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	ε-closure $\left(q_{0}\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}, \varepsilon$-closure $\left(\mathrm{q}_{1}\right)=\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}, \varepsilon$-closure $\left(\mathrm{q}_{2}\right)=\left\{\mathrm{q}_{2}\right\}$

Optio n C:	ह-closure $\left(q_{0}\right)=\left\{q_{0}, q_{1}\right\}, \varepsilon$-closure $\left(q_{1}\right)=\left\{q_{1}\right\}, \varepsilon$-closure $\left(q_{2}\right)=\left\{q_{2}\right\}$
Optio n D:	ε-closure $\left(q_{0}\right)=\left\{q_{0}\right\}, \varepsilon$-closure $\left(q_{1}\right)=\left\{q_{1}\right\}, \varepsilon$-closure $\left(q_{2}\right)=\left\{q_{2}\right\}$
7.	Following DFA represents Language
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	Containing any combination of 0 and 1
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	Containing equal number of zeros and 1's
Optio n C:	Containing all the string except ε
$\begin{aligned} & \text { Optio } \\ & \text { n D: } \end{aligned}$	Containing odd number of 0's and 1's
8.	Regular expression $=0(00)^{*}$ represents the language
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	having odd number of 0's
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	having even number of 0's
Optio n C:	having equal number of 0's
$\begin{gathered} \text { Optio } \\ \text { n D: } \end{gathered}$	having any number of 0's as well as empty string
9.	\qquad is the regular expression to denote the language L over the set $\sum=\{a, b, c\}$ such that every string will have atleast one a followed by atleast one b followed by atleast one c
$\begin{aligned} & \text { Optio } \\ & \text { n A: } \end{aligned}$	$a^{+} b^{+} c^{+}$
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	$a^{*} b^{*} c^{*}$
Optio nC :	$a^{*} b^{*} c$

Optio n D:	$\mathrm{ab}^{*} \mathrm{c}^{*}$
10.	\qquad is R.E. for the language L which accepts all the strings with atleast two b's over the set $\sum=\{a, b\}$
Optio n A. n A:	$(a+b)^{*} b(a+b) * b(a+b) *$
Optio n B:	$(a+b) *(a+b) *(a+b) *$
Optio nC :	$(a+b)^{+}(a+b)^{*}(a+b)^{+}$
Optio n D:	(a+b) (a+b) (a+b)*
11.	Production rules for the CFG for the language having any number of a's over the set $\Sigma=\{a\}$
Optio n A:	$\mathrm{S} \rightarrow \mathrm{aS}$ and $\mathrm{S} \rightarrow \varepsilon$
Optio n B:	$\mathrm{S} \rightarrow \mathrm{aS}$
Optio n C:	$\mathrm{S} \rightarrow \mathrm{a}$
$\begin{gathered} \text { Optio } \\ \text { n D: } \\ \hline \end{gathered}$	$\mathrm{S} \rightarrow \mathrm{S}$
12.	The rule for \qquad is Non terminal=one terminal.Any number of nonterminals
Optio n A:	GNF
Optio n B:	CNF
Optio n C:	Simplified grammer
$\begin{aligned} & \text { Optio } \\ & \text { nD. } \end{aligned}$	LBA
13.	In \qquad we can remove epsilon production, unit production and useless symbol without changing the meaning.
$\begin{gathered} \text { Optio } \\ \text { n A: } \\ \hline \end{gathered}$	Finite Automata

$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	Context free grammer
$\begin{gathered} \text { Optio } \\ \text { n C: } \end{gathered}$	Turing machine
$\begin{aligned} & \text { Optio } \\ & \text { nD: } \end{aligned}$	Linear bounded automata
14.	The grammar $S \rightarrow(\mathrm{~S})$ I SS \| ϵ is not suitable for predictive parsing because the grammar is
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	Right recursive
$\begin{gathered} \text { Optio } \\ \text { nB: } \end{gathered}$	Left recursive
$\begin{aligned} & \text { Optio } \\ & \text { n C: } \end{aligned}$	Ambiguous
$\begin{gathered} \text { Optio } \\ \text { n D: } \\ \hline \end{gathered}$	An operator grammar
15.	\qquad is the instantaneous description to design PDA for accepting language $\mathrm{L}=\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} \mid \mathrm{n} \geq 1$
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	$\begin{aligned} & \delta\left(q_{0}, a, Z_{0}\right)=\left(q_{0}, a_{a} Z_{0}\right) \\ & \delta\left(q_{0}, a, a\right)=\left(q_{0}, a a a\right) \\ & \delta\left(q_{0}, b, a\right)=\left(q_{1}, \varepsilon\right) \\ & \delta\left(q_{1}, b, a\right)=\left(q_{1}, \varepsilon\right) \\ & \delta\left(q_{1}, \varepsilon, Z_{0}\right)=\left(q_{2}, \varepsilon\right) \end{aligned}$
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	$\begin{aligned} & \delta\left(q_{0}, a, Z_{0}\right)=\left(q_{0}, a Z_{0}\right) \\ & \delta\left(q_{0}, a, a\right)=\left(q_{0}, a\right) \\ & \delta\left(q_{0}, b, a\right)=\left(q_{1}, b a\right) \\ & \delta\left(q_{1}, b, a\right)=\left(q_{1}, a b\right) \\ & \delta\left(q_{1}, \varepsilon, z_{0}\right)=\left(q_{2}, \varepsilon\right) \end{aligned}$
$\begin{aligned} & \text { Optio } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \delta\left(q_{0}, a, z_{0}\right)=\left(q_{0}, a\right) \\ & \delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right) \\ & \delta\left(q_{0}, b, a\right)=\left(q_{1}, b\right) \\ & \delta\left(q_{1}, b, a\right)=\left(q_{1}, a\right) \\ & \delta\left(q_{1}, \varepsilon, z_{0}\right)=\left(q_{1}, Z_{0}\right) \end{aligned}$
$\begin{gathered} \text { Optio } \\ \text { n D: } \end{gathered}$	$\delta\left(q_{0}, a, Z_{0}\right)=\left(q_{0}, a\right)$ $\delta\left(q_{0}, a, a\right)=\left(q_{0}, a a\right)$ $\delta\left(q_{0}, b, a\right)=\left(q_{1}, a b\right)$ $\delta\left(q_{1}, b, a\right)=\left(q_{1}, a b\right)$ $\delta\left(q_{1}, \varepsilon, z_{0}\right)=\left(q_{1}, z_{0}\right)$

16.	$\mathrm{L}=0^{m} 1^{n} 0^{m+n}$ can be constructed by using
$\begin{gathered} \hline \text { Optio } \\ \text { n A: } \end{gathered}$	DFA
Optio n B:	NFA
$\begin{gathered} \hline \text { Optio } \\ \text { n C: } \\ \hline \end{gathered}$	PDA
Optio n D:	Moore
17.	Logic to construct turing machine for the language $L=a^{n} b^{n}$ where $n \geq 1$ is \qquad
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	Convert a by A and then move ahead along the input tape and find out the b convert it to B. Repeat this process for all a's and b's
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	Convert b by B and then move ahead along the input tape and find out the a convert it to A .
$\begin{gathered} \hline \text { Optio } \\ \text { n C: } \end{gathered}$	Convert a by A and then move ahead along the input tape and find out the b convert it to B .
Optio n D:	Convert all a's by A first and then convert all b's to B.
18.	In the high level languages use of \qquad built the modularity in the program development process
Optio	Subroutines
$\begin{gathered} \text { Optio } \\ \text { n B: } \end{gathered}$	Function
Optio	stack
Optio n D:	code
19.	Logic to construct TM for the addition function for the unary number system is
$\begin{gathered} \text { Optio } \\ \text { n A: } \end{gathered}$	To simply replace + by 1 and move ahead right for searching end of the string and then we will convert last 1 to Δ.

Optio n B:	To move ahead right for searching end of the string and then we will convert last $\mathbf{1}$ to $\boldsymbol{\Delta}$.
Optio n C:	To simply replace + by $\mathbf{1}$ and move ahead right for searching end of the string $\boldsymbol{\Delta}$.
Optio n D:	To move ahead right for searching end of the string.
20.	The undecidability of strings is determined with the help of
Optio n A:	Post correspondence theorem
Optio n B:	Rice theorem
Optio n C:	halting
Optio n D:	pre-correspondence theorem

Q2. (20 Marks Each)	Solve any Four out of Six
A	Design a DFA to accept string of a's and b's ending with 'abb' over I/P $\mathrm{z}=\{\mathrm{a}, \mathrm{b}\}$
B	Design PDA for the language that accepts the strings with $\mathrm{n}_{\mathrm{a}}(\mathrm{w})<\mathrm{n}_{\mathrm{b}}(\mathrm{w})$ where $\mathrm{w} ~$ $(\mathrm{a}+\mathrm{b})^{*}$
C	Design a mealy machine to find 2's complement of a given binary number.
	Remove the ε production from following CFG by preserving meaning of it. D
S XYX	
	$Y \rightarrow 0 X \mid \varepsilon$
E	$Y \rightarrow 1 Y \mid \varepsilon$

Q3. (20 Marks Each)	Solve any Two Questions out of Three	10 marks each

