University of Mumbai

Examinations Commencing from 7 ${ }^{\text {th }}$ January 2021 to $20^{\text {th }}$ January 2021
Program: Computer Engineering
Curriculum Scheme: Rev2016
Examination:BE Semester VII
Course Code: CSC701 and Course Name: DSIP
Time: 2 hour

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The function given by the equation $x(n)=1$, for $n=0 ; x(n)=0$, for $n \neq 0$ is a
Option A:	Step function
Option B:	Ramp function
Option C:	Triangular function
Option D:	Impulse function
2.	The odd part of a signal $x(t)$ is?
Option A:	$x(\mathrm{t})+\mathrm{x}(-\mathrm{t})$
Option B:	$x(t)-x(-t)$
Option C:	$(1 / 2)^{*}(x(t)+x(-t))$
Option D:	$(1 / 2)^{*}(x(t)-x(-t))$
3.	The system described by the input-output equation $\mathrm{y}(\mathrm{n})=\mathrm{nx}(\mathrm{n})+\mathrm{bx}{ }^{3}(\mathrm{n})$ is a
Option A:	Static system
Option B:	Dynamic system
Option C:	Identical system
Option D:	Dyno system
4.	The system described by the input-output equations $y(n)=x^{2}(n)$ is a
Option A:	Nonlinear system
Option B:	Linear system
Option C:	Ramp system
Option D:	Energy system
5.	The system described by the input-output equations $y(n)=x(n)-x(n-1)$ is

Option A:	Time invariant
Option B:	Time variant
Option C:	Impulse system
Option D:	Step system
6.	DFT of sequence $x(n)=\{5,6,7,8\}$ is
Option A:	\{26, -2+2j, -2, -2-2j\}
Option B:	\{26, -2-2j, -2, -2+2j\}
Option C:	\{26, -2+2j, 2, -2-2j\}
Option D:	\{24, -2+2j, -2, -2-2j\}
7.	If $x(n)$ is a real sequence and $X(k)$ is its N-point DFT, then which of the following is true?
Option A:	$X(N-k)=X(-k)$
Option B:	$X(N-k)=\mathrm{X}^{*}(\mathrm{k})$
Option C:	$X(-k)=X^{*}(k)$
Option D:	All of the mentioned
8.	What is the circular convolution of the sequences $X_{1}(n)=\{2,1,2,1\}$ and $\mathrm{X}_{2}(\mathrm{n})=\{1,2,3,4\}$?
Option A:	\{14,14,16,16\}
Option B:	\{16,16,14,14\}
Option C:	\{2,3,6,4\}
Option D:	\{14,16, 14,16\}
9.	If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then circular time shift property says that N-point DFT of $x((n-1))_{N}$ is
Option A:	$X(k) e^{-j 2 \pi k l / N}$
Option B:	$X(k) \mathrm{e}^{\mathrm{j} 2 \pi \mathrm{k} / \mathrm{N}}$
Option C:	$x(n) e^{-j 2 \pi n / / N}$
Option D:	$x(n) e^{j 2 \pi k / / N}$
10.	If $\mathrm{X}(\mathrm{k})$ is the N -point DFT of a sequence $\mathrm{x}(\mathrm{n})$, then what is the DFT of $\mathrm{x}^{*}(\mathrm{n})$?
Option A:	X(N-k)
Option B:	$\mathrm{X}^{*}(\mathrm{k})$
Option C:	$\mathrm{X}^{*}(\mathrm{~N}-\mathrm{k})$
Option D:	$-\mathrm{X}^{*}(\mathrm{k})$
11.	A pixel p at coordinates (x, y) has neighbors whose coordinates are given by $(\mathrm{x}+1, \mathrm{y}),(\mathrm{x}-1, \mathrm{y}),(\mathrm{x}, \mathrm{y}+1),(\mathrm{x}, \mathrm{y}-1)$. This set of pixels is called as \qquad
Option A:	4-neighbors of p

Option B:	Diagonal Neighbors
Option C:	8-Neighbors
Option D:	16-Neighbors
12.	Two pixels p and q having gray values from v , the set of gray level values used to define adjacency are m -adjacent if
Option A:	q is in $\mathrm{N} 5(\mathrm{p}), \mathrm{q}$ is in $\mathrm{ND}(\mathrm{p})$ and the set $\mathrm{N} 4(\mathrm{p}) \cap \mathrm{N} 4(\mathrm{q})$ has no pixels whose values are from V
Option B:	q is in $\mathrm{N} 4(\mathrm{p}), \mathrm{q}$ is in $\mathrm{ND}(\mathrm{p})$ and the set $\mathrm{N} 4(\mathrm{p}) \mathrm{UN} 4(\mathrm{q})$ has no pixels whose values are from V
Option C:	q is in $\mathrm{N} 8(\mathrm{p}), \mathrm{q}$ is in $\mathrm{ND}(\mathrm{p})$ and the set $\mathrm{N} 6(\mathrm{p}) \mathrm{UN} 4(\mathrm{q})$ has no pixels whose values are from V
Option D:	q is in $\mathrm{N} 8(\mathrm{p}), \mathrm{q}$ is in $\mathrm{N} 4(\mathrm{p})$ and the set $\mathrm{N} 5(\mathrm{p}) \cap \mathrm{N} 5(\mathrm{q})$ has no pixels whose values are from V
13.	Oldest source of EM radiations used for imaging
Option A:	Visible
Option B:	gamma
Option C:	x-rays
Option D:	Ultraviolet
14.	what is the technique for a gray level transformation function called, if the transformation would be to produce an image of higher contrast than the original by darkening the levels below some gray level m and brightening the levels above m in the original image.
Option A:	Contouring
Option B:	Contrast Stretching
Option C:	Mask Processing
Option D:	Point Processing
15.	Using gray level transformations, the basic function logarithmic

$\left.\begin{array}{|c|llllll|}\hline \text { Option B: } & {\left[\begin{array}{llllll|}-8 & -12 & -8 ; 4 & 2 & 0 ; 8 & 12 \\ \hline\end{array}\right.} & 8\end{array}\right]$.

$\begin{gathered} \hline \text { Q2 } \\ \text { (20 Marks Each) } \end{gathered}$	Solve any Four out of Six 5 marks each
A	Determine cross correlation of following two signals $\mathrm{x} 1(\mathrm{n})=\{2,2,1,2\}$ and $\mathrm{x} 2(\mathrm{n})=\{-2,-1,3,2\}$
B	Determine energy and power of unit step signal.
C	Explain 4 connectivity, 8 connectivity and m connectivity with the help of example
D	Perform contrast stretching on the following 4 bpp image ($\mathrm{r}_{1}=4, \mathrm{r}_{2}=$ $9, \mathrm{~s}_{1}=2, \mathrm{~s}_{2}=13$)
E	Explain edge detection
F	Calculate DFT of a sequence $x(n)=\{1,1,0,0\}$ and check the validity of your answer by calculating its IDFT.

