University of Mumbai

Examinations Commencing from 7th January 2021 to 20th January 2021

Program: **Computer Engineering** Curriculum Scheme: Rev2016 Examination:BE Semester VII

Course Code: $\ensuremath{\mathsf{CSC701}}$ and Course Name: $\ensuremath{\mathsf{DSIP}}$

Time: 2 hour

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks					
1.	The function given by the equation $x(n)=1$, for $n=0$; $x(n)=0$, for $n\neq 0$ is a					
Option A:	Step function					
Option B:	Ramp function					
Option C:	Triangular function					
Option D:						
2	The odd part of a signal $x(t)$ is?					
Option A:	$\mathbf{x}(t) + \mathbf{x}(t)$					
Option B:	$\chi(t) \chi(t)$					
Option D .	$\wedge(\iota)^{-}\wedge(^{-}\iota)$					
Option C:	$(1/2)^{*}(x(t)+x(-t))$					
Option D:	$(1/2)^{*}(x(t)-x(-t))$					
3.	The system described by the input-output equation $y(n)=nx(n)+bx^{3}(n)$ is a					
Option A:	Static system					
Option B:	Dynamic system					
Option C:	Identical system					
Option D:	Dyno system					
4.	The system described by the input-output equations $y(n)=x^2(n)$ is a					
Option A:	Nonlinear system					
Option B:	Linear system					
Option C:	Ramp system					
Option D:	Energy system					
5.	The system described by the input-output equations $y(n)=x(n)-x(n-1)$ is					

Option B:Time variantOption C:Impulse systemOption D:Step system6.DFT of sequence $x(n) = \{5,6,7,8\}$ isOption A: $\{26, -2+2j, -2, -2-2j\}$ Option B: $\{26, -2+2j, -2, -2-2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option A: $x(N-k)=x(k)$ Option B: $x(N-k)=x(k)$ Option B: $x(N-k)=x(k)$ Option B: $x(N-k)=x(k)$ Option C: $x(N-k)=x(k)$ Option D:All of the mentioned8.What is the circular convolution of the sequences $X_n(n)=\{2,1,2,1\}$ and $x_n(n)=\{1,2,3,4\}$?Option B: $\{14,14,16,16\}$ Option D: $\{14,14,16,16\}$ Option D: $\{14,14,16,16\}$ Option D: $\{14,16,14,14)$ Option D: $\{14,16,14,14)$ Option D: $\{14,16,14,16\}$ 9.If $X(k)$ is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-1))_n$ is	Option A:	Time invariant
Option C:Impulse systemOption D:Step system6.DFT of sequence $x(n) = \{5, 6, 7, 8\}$ isOption A: $\{26, -2+2j, -2, -2-2j\}$ Option B: $\{26, -2-2j, -2, -2+2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option A: $x(N-k)=x(-k)$ 7.If $x(n)$ is a real sequence and $X(k)$ is its N-point DFT, then which of the following is true?Option B: $X(N-k)=x^*(k)$ Option D: All of the mentioned8.What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_n(n)=\{1,2,3,4\}$?Option A: $\{14,14,16,16\}$ Option D: $\{14,14,16,16,14,14\}$ Option D: $\{14,16,14,14\}$ Option D: $\{14,16,16,14,14\}$ Option D: $\{14,16,16,14,14\}$ Option D: $\{14,16,14,14\}$ Option D: $\{14,16,14,16\}$ 9.If $X(k)$ is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-l))_n$ is	Option B:	Time variant
Option D: Step system 6. DFT of sequence $x(n) = \{5, 6, 7, 8\}$ is	Option C:	Impulse system
6. DFT of sequence x(n) ={5,6,7,8} is	Option D:	Step system
Option A: $\{26, -2+2j, -2, -2-2j\}$ Option B: $\{26, -2-2j, -2, -2+2j\}$ Option C: $\{26, -2+2j, 2, -2-2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option A: $X(N-k)=X-k$ Option B: $X(N-k)=X-k$ Option C: $X(N-k)=X^*(k)$ Option C: $X(-k)=X^*(k)$ Option D: All of the mentioned 8. What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$? Option D: $\{14,14,16,16\}$ Option D: $\{16,16,14,14\}$ Option D: $\{14,16,14,16\}$ 9. If $X(k)$ is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-l))_N$ is	6.	DFT of sequence x(n) ={5,6,7,8} is
Option B: $\{26, -2-2j, -2, -2+2j\}$ Option C: $\{26, -2+2j, 2, -2-2j\}$ Option D: $\{24, -2+2j, -2, -2-2j\}$ Option A: $X(N)$ is a real sequence and $X(k)$ is its N-point DFT, then which of the following is true? Option A: $X(N-k)=X(-k)$ Option B: $X(N-k)=X(-k)$ Option D: $X(N-k)=X(-k)$ Option D: $X(N-k)=X(-k)$ Option D: $X(N-k)=X^*(k)$ Option D: $X(-k)=X^*(k)$ Option D: All of the mentioned 8. What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$? Option B: $\{16,16,14,14\}$ Option D: $\{14,14,16,16\}$ 9. If $X(k)$ is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-1))_N$ is 9. If $X(k) = j2\pi k l/N$ Option B: $\chi(k) e^{j2\pi k l/N}$ Option C: $x(n) e^{-j2\pi n l/N}$	Option A:	{26, -2+2j, -2, -2-2j}
Option C: $\{26, -2+2], 2, -2-2]$ Option D: $\{24, -2+2], -2, -2-2]$ 7.If x(n) is a real sequence and X(k) is its N-point DFT, then which of the following is true?Option A: $X(N-k)=X(-k)$ Option B: $X(N-k)=X^*(k)$ Option D:All of the mentioned8.What is the circular convolution of the sequences X ₁ (n)={2,1,2,1} and x ₂ (n)={1,2,3,4}?Option A:{14,14,16,16}Option D:{16,16,14,14}Option D:{14,16,16,14,14}Option D:{14,16,14,16}9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N isOption B: $X(k)e^{j2\pi kl/N}$ Option C: $x(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$	Option B:	{26, -2-2j, -2, -2+2j}
Option D: $\{24, -2+2j, -2, -2-2j\}$ 7.If x(n) is a real sequence and X(k) is its N-point DFT, then which of the following is true?Option A:X(N-k)=X(-k)Option B:X(N-k)=X*(k)Option D:All of the mentioned8.What is the circular convolution of the sequences X,(n)={2,1,2,1} and x_2(n)={1,2,3,4}?Option A:{14,14,16,16}Option D:{16,16,14,14}Option C: $\{2,3,6,4\}$ Option D:{14,16,16,14,16}9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N isOption B:X(k)e^{j2\pi kl/N}Option C:x(k)e^{j2\pi kl/N}Option C:x(n)e^{-j2\pi nl/N}Option C:x(n)e^{-j2\pi nl/N}	Option C:	{26, -2+2j, 2, -2-2j}
7. If $x(n)$ is a real sequence and $X(k)$ is its N-point DFT, then which of the following is true? Option A: $X(N-k)=X(-k)$ Option B: $X(N-k)=X^*(k)$ Option C: $X(-k)=X^*(k)$ Option D: All of the mentioned 8. What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$? Option A: $\{14,14,16,16\}$ Option D: $\{14,16,14,14\}$ Option D: $\{14,16,14,14\}$ Option D: $\{14,16,14,16\}$ 9. If $X(k)$ is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-l))_N$ is Option A: $X(k)e^{-j2\pi kl/N}$ Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$	Option D:	{24, -2+2i, -2, -2-2i}
7. If x(n) is a real sequence and X(k) is its N-point DFT, then which of the following is true? Option A: X(N-k)=X(-k) Option B: X(N-k)=X*(k) Option D: All of the mentioned 8. What is the circular convolution of the sequences X,(n)={2,1,2,1} and x_2(n)={1,2,3,4}? Option A: {14,14,16,16} Option D: {16,16,14,14} Option D: {14,16,16,14} Option D: {14,16,14,16} 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N is Option A: X(k)e ^j 2πkl/N Option B: X(k)e ^j 2πkl/N Option C: x(n)e ^{-j} 2πnl/N Option C: x(n)e ^{-j2πnl/N}	I	
Option A: $X(N-k)=X(-k)$ Option B: $X(N-k)=X^*(k)$ Option C: $X(-k)=X^*(k)$ Option D:All of the mentioned8.What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$?Option A: $\{14,14,16,16\}$ Option B: $\{16,16,14,14\}$ Option C: $\{2,3,6,4\}$ Option D: $\{14,16,14,16\}$ 9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N isOption A: $X(k)e^{-j2\pi kl/N}$ Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$	7.	If x(n) is a real sequence and X(k) is its N-point DFT, then which of the following is true?
Option B: $X(N-k)=X^*(k)$ Option C: $X(-k)=X^*(k)$ Option D:All of the mentioned8.What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$?Option A: $\{14,14,16,16\}$ Option B: $\{16,16,14,14\}$ Option C: $\{2,3,6,4\}$ Option D: $\{14,16,14,16\}$ 9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N isOption A: $X(k)e^{j2\pi kl/N}$ Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$	Option A:	X(N-k)=X(-k)
Option C: $X(-k)=X^*(k)$ Option D:All of the mentioned8.What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$?Option A: $\{14,14,16,16\}$ Option B: $\{16,16,14,14\}$ Option C: $\{2,3,6,4\}$ Option D: $\{14,16,14,16\}$ 9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N isOption A: $\chi(k)e^{-j2\pi kl/N}$ Option B: $\chi(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi kl/N}$	Option B:	$X(N-k)=X^{*}(k)$
Option D:All of the mentioned8.What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$?Option A: $\{14,14,16,16\}$ Option B: $\{16,16,14,14\}$ Option C: $\{2,3,6,4\}$ Option D: $\{14,16,14,16\}$ 9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N isOption A:X(k)e^{j2\pi kl/N}Option B:X(k)e^{j2\pi kl/N}Option C:x(n)e^{-j2\pi nl/N}Option C:x(n)e^{-j2\pi nl/N}	Option C:	$X(-k) = X^{*}(k)$
8. What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$? Option A: {14,14,16,16} Option B: {16,16,14,14} Option C: {2,3,6,4} Option D: {14,16,14,16} 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N is Option A: X(k)e^{j2\pi kl/N} Option B: X(k)e^{j2\pi kl/N} Option C: x(n)e^{j2\pi kl/N} Option C: x(n)e^{j2\pi kl/N}	Option D:	All of the mentioned
8. What is the circular convolution of the sequences $X_1(n)=\{2,1,2,1\}$ and $x_2(n)=\{1,2,3,4\}$? Option A: {14,14,16,16} Option B: {16,16,14,14} Option D: {14,16,14,16} 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N is Option A: X(k) $e^{j2\pi kl/N}$ Option B: X(k) $e^{j2\pi kl/N}$ Option C: x(n) $e^{-j2\pi nl/N}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.	What is the circular convolution of the sequences $X_1(n) = \{2, 1, 2, 1\}$ and
Option A: $\{14, 14, 16, 16\}$ Option B: $\{16, 16, 14, 14\}$ Option C: $\{2, 3, 6, 4\}$ Option D: $\{14, 16, 14, 16\}$ 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l))_N is Option A: X(k)e^{j2\pi kl/N} Option B: X(k)e^{j2\pi kl/N} Option C: x(n)e^{-j2\pi nl/N}		$x_2(n) = \{1, 2, 3, 4\}?$
Option B:{16,16,14,14}Option C:{2,3,6,4}Option D:{14,16,14,16}9.If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of $x((n-l))_N$ isOption A:X(k) $e^{-j2\pi kl/N}$ Option B:X(k) $e^{j2\pi kl/N}$ Option C:x(n) $e^{-j2\pi nl/N}$	Option A:	
Option C: $\{2,3,6,4\}$ Option D: $\{14,16,14,16\}$ 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N is Option A: X(k) $e^{-j2\pi kl/N}$ Option B: X(k) $e^{j2\pi kl/N}$ Option C: x(n) $e^{-j2\pi nl/N}$	Option B:	
Option D: {14, 16, 14, 16} 9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N is Option A: X(k) $e^{-j2\pi kl/N}$ Option B: X(k) $e^{j2\pi kl/N}$ Option C: x(n) $e^{-j2\pi nl/N}$	Option C:	
9. If X(k) is the N-point DFT of a sequence x(n), then circular time shift property says that N-point DFT of x((n-l)) _N is Option A: $X(k)e^{-j2\pi kl/N}$ Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$	Option D:	
Option A: $X(k)e^{-j2\pi kl/N}$ Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$	9.	If X(k) is the N-point DFT of a sequence $x(n)$, then circular time shift property says that N-point DFT of $x((n-l))_N$ is
Option B: $X(k)e^{j2\pi kl/N}$ Option C: $x(n)e^{-j2\pi nl/N}$	Option A:	$X(k)e^{-j2\pi k l/N}$
Option C: $x(n)e^{-j2\pi nl/N}$	Option B:	X(k)ej2πkl/N
	Option C:	$\gamma(n) \mathbf{O}^{-j2\pi nl/N}$
Untion D: Ly(n) OIZ UKI/IN	Option D:	$x(n)e^{j}$
	Cruon D.	
10 If $Y(k)$ is the N point DET of a sequence $y(n)$ then what is the DET of $y^*(n)^2$	10	If $Y(k)$ is the N point DET of a sequence $y(n)$, then what is the DET of $y^*(n)^2$
$\frac{10.}{\text{Option A}} = \frac{X(N-k)}{X(N-k)}$	Option A:	(1) (1) is the N-point DFT of a sequence $X(1)$, then what is the DFT OFX (1)? X(N-k)
Option B: $\chi^{*}(k)$	Option B:	X(N-K)
Option C: $X^{(N)}$	Option C:	X*(N-k)
Option D: $-X^*(k)$	Option D:	-X*(k)
	Option D.	
11. A pixel p at coordinates (x,y) has neighbors whose coordinates are given by $(x+1,y),(x-1,y),(x,y+1),(x,y-1)$. This set of pixels is called as	11.	A pixel p at coordinates (x,y) has neighbors whose coordinates are given by $(x+1,y),(x-1,y),(x,y+1),(x,y-1)$. This set of pixels is called as
Option A: 4-neighbors of p	Option A:	4-neighbors of p

Option B:	Diagonal Neighbors
Option C:	8-Neighbors
Option D:	16-Neighbors
12.	Two pixels p and q having gray values from v, the set of gray level values used to define adjacency are m-adjacent if
Option A:	q is in N5(p), q is in ND(p) and the set N4(p) \cap N4(q) has no pixels whose values are from V
Option B:	q is in N4(p), q is in ND(p) and the set N4(p)UN4(q) has no pixels whose values are from V
Option C:	q is in N8(p), q is in ND(p) and the set N6(p)UN4(q) has no pixels whose values are from V
Option D:	q is in N8(p), q is in N4(p) and the set N5(p) \cap N5(q) has no pixels whose values are from V
12	
15.	Oldest source of EM radiations used for imaging
Option A:	Visible
Option B:	gamma
Option C:	x-rays
Option D:	Ultraviolet
14.	what is the technique for a gray level transformation function called, if the transformation would be to produce an image of higher contrast than the original by darkening the levels below some gray level m and brightening the levels above m in the original image.
Option A:	Contouring
Option B:	Contrast Stretching
Option C:	Mask Processing
Option D:	Point Processing
15.	Using gray level transformations, the basic function logarithmic

	deals with which of the following transformation							
Option A:	Log and Inverse-Log transformations							
Option B:	Negative and identity transformations							
Option C:	nth and nth	n root trans	formations	3				
Option D:	Contrast Stretching							
16.	If r be the gray level of image before processing and s after processing then which expression defines the negative transformation for the gray level in the range [0,L-1]							
Option A:	S=L-1-r							
Option B:	$S=cr^{\gamma}$, c an	nd <u>γ ar</u> e po	sitive cons	tants				
Option C:	S=clog(1+r), c is a constant and r ≥ 0							
Option D:	S=cr							
17.	Convolution results of laplacian mask and following image are							
	1	2	1					
	2	4	2					
	4	8	4					
			1	-				
Option A:	[0 2 0; -1 2 -1; 6 20 6]							
Option B:	[0 0 2; 1 -2 1;-6 20 -6]							
Option C:	[2 0 0; 1 2 -1; 6 -20 6]							
Option D:	[0 2 0; 1 -2 -1;6 20 6]							
18.	X-gradient image isby applying sobel horizontal mask on the following image							
	3	4	5					
	2	4	2					
	1	4	5	1				
Option A:	[-8 12 -8;	4 - 2 0;8	12 8]					

Option B:	[-8 -12 -8	;4 2 0;8	12	8]				
Option C:	[8 -12 -8;	4 2 0;8	12	8]				
Option D:	[-8 -12 8;	4 2 0;8	12	8]				
19.	Y-gradient image isby applying prewitt vertical mask on the following image							
	3	4	5					
	2	4	2					
	1	4	5					
Option A:	[-8 -2 8; -12 -6 12;-8 -4 8]							
Option B:	[8 2 8; -12 -6 12; -8 -4 8]							
Option C:	[-8 - 2 8; 12 -6 12;-8 -4 8]							
Option D:	[-8 - 2 8; -12 6 12; -8 -4 8]							
20.	DFT of sequence x(n) is given by X(K)={4, 1+2j ,j, 1-3j}. Then DFT of x*(n) is using DFT property							
Option A:	{4,1+3j,-j,1-2j}							
Option B:	{4,1-3j,-j,1-2	j}						
Option C:	{4,1+3j,-j,1+2j}							
Option D:	{4,1+3j,j,1-2j}							

Q2	Solve any Four out of Six5 m	arks each						
(20 Marks Each)								
А	Determine cross correlation of following two signals $x1(n)=\{2,2,1,2\}$ and $x2(n)=\{-2,-1,3,2\}$							
В	Determine energy and power of unit step signal.	Determine energy and power of unit step signal.						
С	Explain 4 connectivity, 8 connectivity and m connectivity with the help of example							
D	Perform contrast stretching on the following 4 bpp image ($r_1=4, r_1=4, r_2=13$)	r ₂ =						
Е	Explain edge detection							
F	Calculate DFT of a sequence $x(n) = \{1,1,0,0\}$ and check the valid answer by calculating its IDFT.	lity of your						

Q3.	Solve any Two Questions out of Three 10 mar					
(20 Marks Each)						
А	Determine whether the following system is linear, time invariant, Static, causal and stable or not y(n)=4x(n)+2					
В	Derive radix 2 DIT-FFT algorithm and Determine circular convolution of following two sequences using radix 2 DIT-FFT algorithm $x(n)=\{1,2,1,4\}$ and $h(n)=\{1,2,3,2\}$					
С	Equalize the Grey level O 1 2 3 4 5 6 7	ne given histogra	m			