University of Mumbai

Civil Engineering Examination

Sub: CE-DLO 5062/ Advanced Concrete Technology Year/Sem:- TE/ V Sem Max. Marks: 80 Duration: - 2Hrs

Q1. Attempt all the MCQS

 $(20 \times 2 \text{ mark} = 40 \text{ marks})$

- 1. As the hydration proceeds the deposit of hydrated products on the original cement grains makes the diffusion of water to unhydrated nucleus -----
 - a) Easy
 - b) Very Easy
 - c) Average
 - d) Very Difficult
- 2. In order to prevent rapid reaction which of the following is added to clinkers
 - a) C₄AF
 - b) Gypsum
 - c) Nitrate
 - d) Extra Cement
- 3. Which of the following doesn't fall under Calcareous Rocks?
 - a) Limestone
 - b) Cement Rock
 - c) Chalk
 - d) Marine Shell Deposit
- 4. To obtain cement dry powder, limestone & shales or their slurry is bunt in rotary kiln at temperature between
 - a) 1100 1200 $^{\circ}$ C
 - b) 1200 1300 °C
 - c) 1300 1400 0 C
 - d) 1400 1500 ⁰C
- 5. Moisture content in slurry for wet process is
 - a) 35-50 %
 - b) 12 %
 - c) 40-45 %
 - d) 100 %
- 6. Durability of concrete is proportional to
 - a) Sand Content
 - b) Water Cement ratio
 - c) Aggregate ratio
 - d) Cement Aggregate ratio
- 7. The cement concrete from which entrained air & excess water are removed after placing in position is called as
 - a) LWC

- b) Prestressed Concretec) Sawdust Concreted) Vacuum Concrete
- 8. Density of no fines concrete with light weight aggregate is
 - a) $1600 1900 \text{ kg/m}^3$
 - b) $< 300 \text{ kg/m}^3$
 - c) $> 300 \text{ kg/m}^3$
 - d) $> 2500 \text{ kg/m}^3$
- 9. Diameter of round steel fibres lies in range of
 - a) 0.3-0.5 mm
 - b) 0.25-0.75 mm
 - c) 0.155-0.41 mm
 - d) 0.25-0.90 mm
- 10. Main component in sulphur infiltrated concrete is
 - a) Cement
 - b) Sulphur
 - c) Aggregates
 - d) Sulphur & Aggregates
- 11. Bending strength of sulphur infiltrated concrete in MPa is
 - a) 60-115
 - b) 10-16
 - c) 35-50
 - d) 500
- 12. IS code for specification for Ordinary Portland Cement Grade 33 is
 - a) IS 269:1989
 - b) IS 383:1979
 - c) IS 455:1989
 - d) IS 456:2000
- 13. Which of the following can't be reason for shrinkage of concrete
 - a) W/C ratio
 - b) Temperature
 - c) Cement Content
 - d) Formwork
- 14. Which of the following test requires leak proofing of casting before inspection
 - a) Impact Test
 - b) Visual Inspection
 - c) Sound Test
 - d) Pressure Test
- 15. Which of the following terms changes in eddy current testing method for detection of defects in casting?
 - a) Resistance
 - b) Impedence

- c) Conductivity
- d) Capacitance
- 16. What is the approximate mix proportion for M15
 - a) 1:3:6
 - b) 1:2:4
 - c) 1:1.5:3
 - d) 1:1:2
- 17. In ACI method of mix design for given slump & MSA which of the following is determined
 - a) Slump value
 - b) The maximum size of aggregate
 - c) Amount of mixing water
 - d) Minimum water cement ratio
- 18. Relation of rate of creep and time is
 - a) increases
 - b) decreases
 - c) depends on temp.
 - d) is not affected
- 19. Reduction in volume due to shrinkage causes
 - a) Low volume
 - b) Volumetric strain
 - c) Volumetric stress
 - d) Change in W/C ratio
- 20. Symptoms for Aggressive ACR reaction is
 - a) Disintegration of concrete evident by loss of cement paste
 - b) Concrete surface very rough in areas where paste is leached
 - c) Affected concrete ehibit telltale features too distinctly
 - d) Expansion does not occur without reaction products

Q2. Attempt any FOUR

(04 X 05 marks= 20 marks)

- 1. Explain properties of fresh concrete.
- 2. Write short note on vacuum concreting.
- 3. Explain with neat sketches cracking mechanism in FRC member subjected to flexure.
- 4. Write short note on Properties of metallic fibres
- 5. With neat sketches explain half-cell potentiometer test.
- 6. Explain ACR in detail with equations

- 1. Define hot weather concreting. What are the effects of hot weather concreting? What are the precautions to be taken during hot weather concreting?
- 2. Design a concrete mix by ACI method for the following data
 - i. Characteristic compressive strength at 28 days = M20
 - ii. Standard Deviation = 4.0
 - iii. Nominal maximum size of aggregate = 20 mm
 - iv. Type of Cement = Type 1
 - v. Shape of CA = crushed aggregate
 - vi. Workability = 100 mm slump
 - vii. Type of exposure = mild
 - viii. Dry rodded density of coarse aggregate = 1640 kg/m³
 - ix. Specific Gravity of cement = 3.15
 - x. Specific Gravity of C.A = 2.78
 - xi. Specific Gravity of F.A = 2.72
 - xii. Degree of Supervision = Good
 - xiii. Maximum water cement ratio = 0.50
 - xiv. Fineness Modulus = 2.78
 - xv. Aggregates are assumed to be in saturated surface dry condition
- 3. What is non-destructive testing of concrete? What are the various tests involved? Explain any one in detail with neat sketch?
- 4. Explain the behavior of hardened steel fiber reinforced concrete (SFRC) under compression. Comment the significance of change in stress- strain curve of SFRC when compared to plain and reinforced cement concrete.

Slumn (mm)

Maximum and in contents for different slumps and max. size of aggregates

Slump (mm)	Maximum quantity of water (kg/m³) for specified nominal maximum size of aggregate®							
	10	14	20	28	40	56*		150*
1. Non-air-entrained cor	ncrete							
Stiff-plastic (25-50)	207	199	190	179	166	154	130	113
Plastic (75–100)	228	216	285	193	181	169	145	124
Flowing (150–175) Approximate	243	228	216	202	190	178	160	-
Entrapped air (%)	3.0	2.5	2.0	1.5	1.0	0.5	0.3	0.2
2. Air-entrained concre	te							
Stiff-plastic (25-50)	181	175	168	160	150	142	122	107
Plastic (75-100)	202	193	184	175	165	157	133	3 119
Flowing (150-175)	216	205	197	184	174	166	154	1 -
3. Recomménded avera	ge tota	al air co	ontent ((%)				
Mild exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.	5 1.
Moderate exposure	6.0	5.5	5.0	4.5		4.0	3.	5 3.
Severe exposure	7.5	7.0	6.0	6.0			4.	5 4

Table 7: Water-Cement Ratio and Compressive Strength Relationship

	Water/cementing material ratio by mass*				
28-day compressive strength# (N/mm²)	Non-air-entrained concrete	Air-entrained concrete			
45	0.38	0.30			
40	0.42	0.34			
35	0.47	0.39			
30	0.54	0.45			
25	0.61	0.52			
20	0.69	0.60			
15	0.97	0.70			

able 8: Volume of Coarse Aggregate per Unit Volume for Different Fine aggregate Fineness Moduli

Nominal maximum size of coarse aggregate (mm)	Bulk volume of oven-dry-rodded coarse aggregate (m³) fineness modulus of fine aggregate						
	2.40	2.60	2.80	3.00			
10	0.50	0.48	0.46	0.44			
14	0.59	0.57	0.55	0.53			
20	0.66	0.64	0.62	0.60			
28	0.71	0.69	0.67	0.65			
40	0.75	0.73	0.71	0.69			
56	0.78	0.76	0.74	0.72			
80	0.82	0.80	0.78	0.76			
150	0.87	0.85	0.83	0.81			