Program: BE

Curriculum Scheme: Revised 2016

Examination: First Year Semester I

Course Code: FEC105
Time: 1 hour

Course Name: Basic Electrical Engineering
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Kirchhoff's Voltage Law states that in any given circuit, the algebraic sum of the applied EMFs is equal to the:
Option A:	algebraic sum of the voltage drops
Option B:	algebraic difference between any two voltage drops
Option C:	value of the algebraic applied current
Option D:	sum of the algebraic resistance values
Q2.	Look at the following diagram: The equivalent resistance to replace the three resistors in the series circuit shown above
Option A:	5
Option B:	10
Option C:	35
Option D:	40
Q3.	The voltage across any number of components connected in parallel will:
Option A:	be greater than the supply voltage
Option B:	always be the same
Option C:	equal to the sum, of the voltages across each component
Option D:	always be equal to 230 V
Q4.	Find Thevenin's voltage across points A and B.

Option A:	5.54 V
Option B:	3.33 V
Option C:	6.67 V
Option D:	3.67 V
Q5.	Norton resistance is found by
Option A:	Shorting all voltage sources
Option B:	Opening all current sources
Option C:	Shorting all voltage sources and opening all current sources
Option D:	Opening all voltage sources and shorting all current sources
Q6.	A alternating current takes 3.375 ms to reach 15 A for the first time after becoming instantaneously zero. The frequency of the current is 40 Hz . Find the maximum value of alternating current.
Option A:	20A
Option B:	2.2 A
Option C:	200A
Option D:	1.2 A
Q7.	In a series RLC circuit, $\mathrm{R}=2 \mathrm{~K} \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=(1 / 400) \mu \mathrm{F}$. The resonant frequency is
Option A:	2*10^4 HZ
Option B:	$(1 / \pi) * 10^{\wedge} 4 \mathrm{HZ}$
Option C:	$10^{\wedge} 4 \mathrm{HZ}$
Option D:	$2 \pi^{*} 10^{\wedge} 4 \mathrm{HZ}$
Q8.	A capacitor has a capacitance of 30 microfarad which is connected across a 230 $\mathrm{V}, 50 \mathrm{~Hz}$ supply. Find capacitive reactance.
Option A:	100Ω
Option B:	106Ω
Option C:	110Ω
Option D:	120Ω
Q9.	In inductive circuit, when Inductance (L) or inductive reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$ increases, the circuit current
Option A:	Also Increases
Option B:	Decreases
Option C:	Remain Same
Option D:	None of the above
Q10.	A circuit with a resistor, inductor and capacitor in series is resonant of $f_{0} \mathrm{~Hz}$.If all the component values are now doubled, the new resonant frequency is
Option A:	$2 \mathrm{f}_{0}$
Option B:	f_{0}
Option C:	$\mathrm{f}_{0} / 4$
Option D:	$\mathrm{f}_{0} / 2$

Q11.	In three phase systems, voltages differ in phase by
Option A:	30^{0}
Option B:	60°
Option C:	90°
Option D:	120°
Q12.	Power in a Three Phase Circuit
Option A:	$\mathrm{P}=3 \mathrm{~V}_{\text {Ph }} \mathrm{I}$ Ph $\operatorname{Cos} \Phi$
Option B:	$\mathrm{P}=\mathrm{V} 3 \mathrm{~V}_{\text {ph }} \mathrm{l}_{\text {¢ }} \operatorname{Cos} \Phi$
Option C:	$\mathrm{P}=3 \mathrm{~V} \mathrm{~V}_{\mathrm{L}} \operatorname{Cos} \Phi$
Option D:	$\mathrm{P}=3 \mathrm{Iph} \mathrm{I}_{\llcorner } \operatorname{Cos} \Phi$
Q13.	If three impedances are connected in star are connected to 440 V supply. Calculate phase voltage.
Option A:	254 V
Option B:	340 V
Option C:	290 V
Option D:	300 V
Q14.	A balanced delta connected load impedance (8-j6) ohms per phase is connected to a three phase, $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate (i) power factor
Option A:	0.8 (lagging)
Option B:	0.8 (leading)
Option C:	0.9 (lagging)
Option D:	0.9 (leading)
Q15.	In star connection
Option A:	$\mathrm{IL}=\mathrm{I} \mathrm{ph}$
Option B:	$\mathrm{VL}=\mathrm{Vph}$
Option C:	$\mathrm{IL}=$ V 3 lph
Option D:	$\mathrm{IL}=2 \mathrm{lph}$
Q16.	What will be the secondary voltage at no load if the primary of a 5 KVA , $220 / 110 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer is fed at $110 \mathrm{~V}, 50 \mathrm{~Hz}$.
Option A:	50 V
Option B:	55 V
Option C:	60 V
Option D:	65 V
Q17.	A single phase 50 Hz transformer has 80 turns on the primary windings and 280 turns in the secondary windings. The voltage applied across the primary winding

	is 240 V at 50 Hz . Calculate maximum flux density in the core
Option A:	$0.68 \mathrm{~Wb} / \mathrm{m}^{2}$
Option B:	$0.78 \mathrm{~Wb} / \mathrm{m}^{2}$
Option C:	$68 \mathrm{~Wb} / \mathrm{m}^{2}$
Option D:	$78 \mathrm{~Wb} / \mathrm{m}^{2}$
Q18.	A 100 KVA, single phase transformer has iron loss of 600 W and copper loss of 1.5 KW at full load current. Calculate efficiency at full load
Option A:	92.77\%
Option B:	94.77\%
Option C:	98.99\%
Option D:	97.44 \%
Q19.	In a transformer, the primary and secondary voltages are
Option A:	60° out of phase
Option B:	90° out of phase
Option C:	180° out of phase
Option D:	Always in phase
Q20.	Rating of transformer is expressed in
Option A:	KVA
Option B:	KW
Option C:	KA
Option D:	$K \Omega$
Q21.	If each branch of a delta circuit has resistance $\sqrt{ } 3 \mathrm{R}$, then each branch of the equivalent wye circuit has resistance
Option A:	R/V3
Option B:	3R
Option C:	3V3 R
Option D:	R/3
Q22.	The speed of a dc motor is
Option A:	directly proportional to back emf and flux.
Option B:	directly proportional to its back emf and inversely proportional to flux.
Option C:	inversely proportional to both hack emf and flux.
Option D:	directly proportional to flux and inversely proportional to back emf.
Q23.	Maximum torque in a DC machine is limited by
Option A:	Commutation
Option B:	Heating
Option C:	Losses other than heating
Option D:	Stability
Q24.	In superposition theorem, when we consider the effect of one voltage source, all the other voltage sources are \qquad

Option A:	shorted
Option $\mathrm{B}:$	opened
Option $\mathrm{C}:$	removed
Option $\mathrm{D}:$	undisturebed
Q25.	
Option $\mathrm{A}:$	
Option $\mathrm{B}:$	$25^{\prime} \Omega$
Option $\mathrm{C}:$	92
Option $\mathrm{D}:$	52

Answer Key	
Q 1	A
Q2	C
Q3	B
Q4	C
Q5	C
Q6	A
Q 7	B
Q 8	B
Q9	B
Q 10	D
Q11	D
Q12	A
Q13	A
Q14	B
Q15	A
Q16	B
Q17	A
Q 18	D
Q19	C
Q20	A
Q21	A
Q22	B
Q23	A
Q24	A
Q25	A

