Program: FE
Curriculum Scheme: Revised 2012
Examination: Second Year Semester IV
Course Code:
Time: 1 hour

Course Name: Applied Mathematics-IV
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	If X is a normal variate with mean 10 and standard deviation 4 then $\mathrm{P}(5<\mathrm{X}<18)=$	CORRECT ANSWER
Option A:	0.7128	
Option B:	0.8104	
Option C:	0.8716	C
Option D:	0.9121	
Q2.	A statistical measure such as mean μ or standard deviation σ calculated on the basis of population values is called	
Option A:	Statistic	
Option B:	Parameter	B
Option C:	Sample	
Option D:	None of these	
Q3.	t-distribution is used when	
Option A:	Sample size is small	
Option B:	Sample size is 30 or less	
Option C:	Population std. deviation is not known	
Option D:	All of the above	D
Q4.	The "t-statistic" is defined as	
Option A:	$t=\frac{x-\mu}{s / \sqrt{n-1}}$	A
Option B:	$t=\frac{X-\mu}{\sqrt{s} / \sqrt{n}}$	
Option C:	$t=\frac{X-\mu}{s}$	
Option D:	None of the above	

	X	0	1	2	3	
	$\mathrm{P}(\mathrm{x})$	$1 / 6$	$1 / 2$	$3 / 10$	$1 / 30$	
	Find the expectation					
Option A:	2/5					
Option B:	4/5					
Option C:	6/5					C
Option D:	$3 / 5$					
Q20.	Find k , if x is a continuous random variable with p.d.f.$\begin{array}{rlrl} f(x) & =k\left(x-x^{3}\right) & 0 \leq x<1 \\ & =0 & & \text { otherwise } \end{array}$					
Option A:	1/4					
Option B:	4					B
Option C:	3					
Option D:	2					
Q21.	Any solution which satisfies the non-negativity restriction is called					
Option A:	Feasible solution					A
Option B:	Basic solution					
Option C:	Degenerate solution					
Option D:	None of these					
Q22.	For a standard form of an LPP, the right hand side of each equation must be					
Option A:	Negative					
Option B:	Non-negative					B
Option C:	Can be negative or non-negative					
Option D:	None of the above					
Q23.	How many basic solutions will the following LPP have?$\begin{aligned} & \text { Maximize } z=x_{1}+3 x_{2}+3 x_{3} \\ & \text { Subject to, } x_{1}+2 x_{2}+3 x_{3}=4 \\ & 2 x_{1}+3 x_{2}+5 x_{3}=7 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$					
Option A:	2					
Option B:	3					B
Option C:	1					

Option D:	0	
Q24.	In Quadratic programming problems , if all the principal minor determinants of the Hessian matrix at X_{0} are positive then X_{0} is a	
Option A:	Maxima	B
Option B:	Minima	
Option C:	Neither maxima nor minima	A
Option D:	None of these	
Q25.	In Canonical form of LPP the objective function is of	
Option A:	Maximization type	
Option B:	Minimization type	
Option C:	Can be maximization or minimization type	
Option D:	None of these	

