Program: BE Information Technology Engineering

Curriculum Scheme: Revised 2016

Examination: Second Year Semester IV

Course Code: SEITC 405
Time: 1-hour

Course Name: AUTOMATA THEORY
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	Which of the following is not a finite automata?
Option A:	NFA
Option B:	DFA
Option C:	Epsilon -NFA
Option D:	TFA
Q2.	The given DFA accepts which of the following:
	start \rightarrow
Option A:	All Strings starting with 1
Option B:	All Strings ending with 1
Option C:	All Strings starting with 0
Option D:	All Strings ending with 0
	Which of the following should be the final state if the given DFA is to accept all strings ending with 01?
Q3.	

	(a) q_{0} (b) q_{1} (c) q_{2} (d) q_{3}
Option A:	(a)
Option B:	(b)
Option C:	(c)
Option D:	(d)
Q4.	Given an NFA with n states, the minimum number of states in equivalent DFA is (a) n (b) 2^{n} (c) n^{2} (d) None of the above
Option A:	(a)
Option B:	(b)
Option C:	(c)
Option D:	(d)
Q5.	Push down automata accept____languages.
Option A:	Type 3
Option B:	Type 2
Option C:	Type 1
Option D:	Type 0

Q6.	Which of the following is not a part of the context free grammar?
Option A:	End symbol
Option $\mathrm{B}:$	Start symbol
Option C:	Variable
Option $\mathrm{D}:$	Production
Q7.	Which of the following turning machine does not perform?
Option A:	Copying the string
Option B:	Deleting a symbol
Option C:	Accepting language
Option $\mathrm{D}:$	Inserting symbol
Q8.	The given DFA accepts

Option A:	1000101
Option B:	111010111
Option C:	1100001
Option D:	1000110
Q10.	Which of the following statements is correct?
Option A:	The intersection of two regular language is a regular language
Option B:	The complement of two regular language is never a regular language
Option C:	The union of two regular language is not necessarily a regular language
Option D:	None of this
Q11.	Which of the following is true?
Option A:	Every subset of a regular set is regular
Option B:	Every finite subset of a non-regular set is regular
Option C:	The union of two non-regular set is not regular
Option D:	Infinite union of finite sets is regular
Q12.	Which regular expression denotes the language consisting of 0's and 1's that
start with 01 and end with 0?	

	(a) $\left(01(0+1)^{-0}\right)^{-}$ (b) $01(10)^{* 0}$ (c) $(01) *(0+1) 0^{*}$ (d) $01(\mathrm{O}+1) * 0$
Option A:	(a)
Option B:	(b)
Option C:	(c)
Option D:	(d)
Q13.	If $L_{1}=\left\{a^{n} \mid n \geq 0\right\}$ and $L_{2}=\left\{b^{n} \mid n \geq 0\right\}$ consider I $L_{1} \cdot L_{2}$ is a regular language II $L_{1} \cdot L_{2}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ Which of the following is true?
Option A:	Only I
Option B:	Only II
Option C:	Only I and II
Option D:	Neither I nor II
Q14.	Which of the following statement(s) are true? I: Every left recursive grammar can be converted to a right recursive grammar and vice-versa II: All Epsilon productions can be removed from any context-free grammar by suitable transformations III: The derivation trees of strings generated by a context-free grammar in Chomsky Normal Form are always binary trees
Option A:	I, II \& III
Option B:	II \& III
Option C:	I \& III
Option D:	III
Q15.	Let G be a CNF.To derive a string of terminals of length x, the number of productions to be used is
Option A:	2x-1
Option B:	2x

Option C:	$2 \mathrm{x}+1$
Option D:	2 power of x
Q16.	Every grammar in Chomsky Normal Form is
Option A:	Context free
Option B:	Regular
Option C:	Context sensitive
Option D:	Recursive
Q17.	Given grammar-
	$\mathrm{G}:(1) S \rightarrow A S(2) S \rightarrow A A S(3) A \rightarrow S A(4) A \rightarrow a a$
	Which of the following productions denies the format of CNF?
Option A:	2,4
Option B:	1,3
Option C:	1,2,3,4
Option D:	2,3,4
Q18.	Push down automata uses which data structure?
Option A:	Queue
Option B:	Linked List
Option C:	Stack
Option D:	Array
Q19.	With reference to the process of conversion of a context free grammar to CNF, the number of variables to be introduced for the terminals are:
Option A:	3
Option B:	4
Option C:	2
Option D:	5

Q20.	For the given Mealy machine, what is the output sequence for the input sequence 01001?
Option A:	10011
Option B:	10010
Option C:	10001
Option D:	10000
Q21.	For a given moore machine ,to produce output sequence 11101, which input sequence is given
Option A:	01110
Option B:	00111
Option C:	11101
Option D:	None of above
Q22.	Which statement is false?
Option A:	Output of Moore machine depends on state only
Option B:	Output of mealy machine depends on transition state only

Option C:	DFA is a Moore machine
Option D:	Moore machine can be converted to Mealy and vice versa
Q23.	Which of the following can accept even palindrome over \{a,b\}
Option A:	Push down Automata
Option B:	Turing machine
Option C:	NDFA
Option D:	Deterministic PDA
Q24.	According to Chomsky hierarchy, which of the following is adopted by Recursively Enumerable language?
Option A:	Type 0
Option B:	Type 1
Option C:	Type 2
Option D:	Type 3
Q25.	The value of n if Turing machine is defined using n-tuples:
Option A:	6
Option B:	7
Option C:	8
Option D:	5

