Program: SE-I.T. (SEM-III)

Curriculum Scheme: Revised 2016

Examination: Second Year Semester III

Course Code:
Time: 1 hour

Course Name: Applied Mathematics-III
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	$L[f(t)]=F(s)$ then $L\left[t^{n} f(t)\right]=$	Correct Answer option
Option A:	$(-1)^{n} \frac{d^{n}}{d s^{n}}(F(s))$	A
Option B:	$(-1)^{n+1} \frac{d^{n}}{d s^{n}}(F(s))$	
Option C:	$\frac{d^{n}}{d s^{n}}(F(s))$	
Option D:	$(-1)^{n+1} \frac{d^{n+1}}{d s^{n+1}}(F(s))$	
Q2.	Find $L\left[2 t^{3}+\cosh 4 t\right]$	
Option A:	$\frac{12}{s^{4}}+\frac{s}{s^{2}+16}$	
Option B:	$\frac{48}{s^{4}}+\frac{s}{s^{2}+16}$	D
Option C:	$\frac{12}{s^{4}}+\frac{4}{s^{2}+16}$	
Option D:	$\frac{12}{s^{4}}+\frac{s}{s^{2}-16}$	B
	Find $L^{-1}\left(2 t a n h^{-1} s\right)$	
Q3.	$\left(\frac{2}{t} \sinh 2 t\right)$	
Option A:		
Option B:	$\left(\frac{2}{t} \operatorname{sinht}\right)$	
Option C:	$\left(\frac{2}{t} \cosh 2 t\right)$	
Option D:	$\left(\frac{2}{t} \operatorname{cosht}\right)$	
Q4.	Find $L^{-1}\left(\frac{s+2}{s^{2}+4 s+7}\right)$	

Option A:	$e^{-t} \cdot \sin \sqrt{3} t$	
Option B:	$e^{-3 t} \cdot \cosh \sqrt{3} t$	
Option C:	$e^{-2 t} \cdot \cos \sqrt{3} t$	C
Option D:	$e^{-4 t} \cdot \cos 6 t$	
Q5.	Find $L^{-1}\left(\frac{2 s}{s^{4}+4}\right)$	
Option A:	4cost. sinht	
Option B:	2cost.cosht	
Option C:	sin3t.sinht	
Option D:	sint. sinht	D
Q6.	Find $L\left\{t e^{2 t} \cos 3 t\right\}$	
Option A:	$-\frac{(s-2)^{2}-9}{\left[(s-2)^{2}+9\right]^{2}}$	
Option B:	$\frac{(s-2)^{2}-9}{\left[(s-2)^{2}-9\right]^{2}}$	
Option C:	$\frac{(s-2)^{2}-9}{\left[(s-2)^{2}+9\right]^{2}}$	C
Option D:	$\frac{(s-2)^{2}+9}{\left[(s-2)^{2}+9\right]^{2}}$	
Q7.	If $\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\frac{2}{\mathrm{~s}^{3}} \mathrm{e}^{-s}$ Solve $\mathrm{L}\{\mathrm{f}(2 \mathrm{t})\}$	
Option A:	$\frac{8}{s^{3}} e^{\frac{-s}{2}}$	A
Option B:	$\frac{1}{2} \frac{(-8)}{s^{3}} e^{\frac{-s}{2}}$	
Option C:	$\frac{-8}{s^{3}} e^{\frac{-s}{2}}$	
Option D:	$\frac{1}{2} \frac{8}{s^{3}} e^{\frac{-s}{2}}$	
Q8.	Find $L^{-1}\left\{\frac{s+4}{(s+2)^{2}+2^{2}}\right\}$	
Option A:	$e^{-2 t}[\cos 2 t-\sin 2 t]$	
Option B:	$e^{2 t}[\cos 2 t+\sin 2 t]$	
Option C:	$e^{-2 t}[\cosh 2 t+\sinh 2 t]$	

	probability both are king?	
Option A:	.0054	B
Option B:	.0045	
Option C:	.5	
Option D:	.25	
		In how many ways you can arrange 4 boys and 2 girls in a row so that both the girls are together?
Q23.	720	C
Option A:	720	
Option B:	120	
Option C:	240	
Option D:	122	
	A ticket is drawn from tickets numbered from 1 to 20. What is the probability that the number on the card is multiple of 3 or 5.	
Q24.	$1 / 2$	
Option A:	$1 / 20$	
Option B:	$9 / 20$	
Option C:	$2 / 5$	
Option D:	$8 / 15$	
Q25.	A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random. What is the probability that the balls are not blue.	
Option A:	$10 / 21$	
Option B:	$11 / 21$	$2 / 7$
Option C:	$2 / 7$	
Option D:	$5 / 7$	

