Program: SE-I.T. (SEM-III)

Curriculum Scheme: Revised 2012

Examination: Second Year Semester III

Course Code:
Time: 1 hour

Course Name: Applied Mathematics-III
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	$L[f(t)]=F(s)$ then $L\left[t^{n} f(t)\right]=$	Correct Answer option
Option A:	$(-1)^{n} \frac{d^{n}}{d s^{n}}(F(s))$	A
Option B:	$(-1)^{n+1} \frac{d^{n}}{d s^{n}}(F(s))$	
Option C:	$\frac{d^{n}}{d s^{n}}(F(s))$	
Option D:	$(-1)^{n+1} \frac{d^{n+1}}{d s^{n+1}}(F(s))$	
Q2.	Find $L\left[2 t^{3}+\cosh 4 t\right]$	
Option A:	$\frac{12}{s^{4}}+\frac{s}{s^{2}+16}$	
Option B:	$\frac{48}{s^{4}}+\frac{s}{s^{2}+16}$	
Option C:	$\frac{12}{s^{4}}+\frac{4}{s^{2}+16}$	
Option D:	$\frac{12}{s^{4}}+\frac{s}{s^{2}-16}$	D
Q3.	Find $L\left\{t e^{2 t} \cos 3 t\right\}$	
Option A:	$-\frac{(s-2)^{2}-9}{\left[(s-2)^{2}+9\right]^{2}}$	
Option B:	$\frac{(s-2)^{2}-9}{\left[(s-2)^{2}-9\right]^{2}}$	
Option C:	$\frac{(s-2)^{2}-9}{\left[(s-2)^{2}+9\right]^{2}}$	C

Option A:	Finite value	
Option B:	Infinite value	
Option C:	Zero	C
Option D:	Cannot be found	
Q10.	Find b_{n}, when we have to find the half range sine series of the function x^{2} in the interval 0 to 3.	
Option A:	$-18 \frac{\cos (n \pi)}{n \pi}$	A
Option B:	$18 \frac{\cos (n \pi)}{n \pi}$	
Option C:	$-18 \frac{\cos (n \pi / 2)}{n \pi}$	
Option D:	$18 \frac{\cos (n \pi)}{n \pi}$	
Q11.	What is the for parseval's relation in fourier series expansion?	
Option A:	$\int_{-l}^{l}(f(x))^{2} d x=l\left[\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}{ }^{2}\right)\right]$	A
Option B:	$\int_{-l}^{l}(f(x))^{2} d x=l\left[\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}\right)\right]$	
Option C:	$\int_{-l}^{l}(f(x))^{2} d x=\frac{l}{2}\left[\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)\right]$	
Option D:	$l \int_{-l}^{l}(f(x))^{2} d x=\left[\frac{a_{0}{ }^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}{ }^{2}\right)\right]$	
Q12.	In the interval ($-L, L$), the b_{n} co-efficient is	
Option A:	$b_{n}=\frac{1}{L} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$	A
Option B:	$b_{n}=\frac{2}{\pi} \int_{-L}^{L} f(x) \sin (n \pi) d x$	
Option C:	$b_{n}=\frac{1}{\pi} \int_{-L}^{L} f(x) \sin (n \pi) d x$	
Option D:	π	
Q13.	Find a harmonic conjugate $v(x, y)$ of $u(x, y)=2 x-x^{3}+$ $3 x y^{2}$	
Option A:	$v(x, y)=2 y-3 x^{2} y+y^{3}$	A
Option B:	$v(x, y)=2-3 x^{2}+y^{3}$	
Option C:	$v(x, y)=2 y-x^{3} y+3 x y^{2}$	
Option D:	$v(x, y)=2 x-x^{3}+y^{3}$	
Q14.	The function $f(x+i y)=x^{3}+a x^{2} y+b x y^{2}+c y^{3}$ is	

	analytic only if	
Option A:	$a=3 i, b=-3, c=-i$	
Option B:	$a=3 i, b=3, c=-i$	
Option C:	$a=3 i, b=-3, c=i$	C
Option D:	$a=-3 i, b=-3, c=-i$	
Q15.	If the real part of an analytic function $f(z)$ is $x^{2}-y^{2}-y$, then the imaginary part is	
Option A:	$2 x y$	
Option B:	$x^{2}+2 x y$	
Option C:	$2 x y-y$	
Option D:	$2 x y+x$	D
Q16.	If u and v are harmonic function then $f(z)=u+i v$ is	
Option A:	Need not be analytic function	
Option B:	Analytic function	B
Option C:	Analytic function at $\mathrm{z}=0$	
Option D:	Analytic function at $\mathrm{z}=\mathrm{i}$	
Q17.	If $\varphi(x, y)$ and $\emptyset(x, y)$ are function with continuous second derivatives then $\varphi(x, y)+i \varnothing(x, y)$ can be expressed as an analytic function of $x+i y(i=\sqrt{-1})$ when	
Option A:	$\frac{\partial \varphi}{\partial x}=-\frac{\partial \emptyset}{\partial x}, \frac{\partial \varphi}{\partial y}=-\frac{\partial \emptyset}{\partial y}$	
Option B:	$\frac{\partial \varphi}{\partial y}=-\frac{\partial \emptyset}{\partial x}, \frac{\partial \varphi}{\partial x}=\frac{\partial \emptyset}{\partial y}$	B
Option C:	$\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=\frac{\partial^{2} \emptyset}{\partial x^{2}}+\frac{\partial^{2} \emptyset}{\partial y^{2}}=1$	
Option D:	$\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y}=\frac{\partial \emptyset}{\partial x}+\frac{\partial \emptyset}{\partial y}=1$	
Q18.	What is the Z-transform of the $f(k)=a^{k}, k \geq 0$	
Option A:	$\frac{z}{z-a}, \quad R O C:\|z\|>\|a\|$	A
Option B:	$\frac{z}{z-a^{-1}}, \quad R O C:\|z\|>\|a\|$	
Option C:	$\frac{z}{z-1}, \quad$ ROC: $\|z\|>\|a\|$	
Option D:	$\frac{1}{z-a}, \quad$ ROC: $\|z\|>\|a\|$	
Q19.	Find the Z-transform of the $f(k)=k^{2}, k \geq 0$	
Option A:	$\frac{(z+1)}{(z-1)^{3}}, R O C:\|z\|>1$	A
Option B:	$\frac{z(z+1)}{(z-1)^{3}}, \text { ROC: }\|z\|>1$	

Option C:	$\frac{z}{(z-1)^{3}}, R O C:\|z\|>1$	
Option D:	$\frac{z(z+1)}{(z-1)}, R O C:\|z\|>1$	
Q20.	The region of convergence of the Z-transform of $3\left(2^{k}\right)-4\left(3^{k}\right), k \geq 0$	
Option A:	ROC : $\|z\|>3$	A
Option B:	ROC : $\|z\|>2$	
Option C:	ROC : $\|z\|>0$	
Option D:	ROC : $\|z\|>1$	
Q21.	If $\emptyset=x z^{2}-5 y z+x z$, then the gradient of \emptyset i.e $\nabla \emptyset$ at $(1,-1,2)$ is	
Option A:	6i-10j+10k	A
Option B:	$7 \mathrm{i}-11 \mathrm{j}+12 \mathrm{k}$	
Option C:	$6 \mathrm{i}-11 \mathrm{j}+9 \mathrm{k}$	
Option D:	8i-12j+6k	
Q22.	The directional derivative of $\emptyset=x y^{2}+y z^{3}$ at point $(2,-1,1)$ in the direction of vector $\mathrm{i}+2 \mathrm{j}+2 \mathrm{k}$ is	
Option A:	$\frac{11}{3}$	
Option B:	$-\frac{11}{3}$	B
Option C:	$\frac{10}{3}$	
Option D:	$-\frac{10}{3}$	
Q23.	A field is said to be conservative or irrotational if	
Option A:	curl $\bar{F}=0$	A
Option B:	$\operatorname{curl} \bar{F}=1$	
Option C:	curl $\bar{F} \neq 0$	
Option D:	None of these	
Q24.	By Green's Theorem the value of $\int_{r}\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$ where C is a rectangle whose vertices are $(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$ is	
Option A:	$e^{-\pi}-1$	
Option B:	$2\left(e^{\pi}-1\right)$	
Option C:	$2\left(e^{-\pi}-1\right)$	C
Option D:	$\left(e^{\pi}-1\right)$	

Q25.	If $\bar{F}=4 x z i-y^{2} j+y z k$ and C is the area in the plane $\mathrm{z}=0$ bounded by x=0, y=0 and $x^{2}+y^{2}=1$ Then by Stoke's Theorem, $\int_{C} \bar{F} d \bar{r}=$	
Option A:	$\frac{1}{2}$	
Option B:	0	B
Option C:	$\frac{5}{7}$	
Option D:	$\frac{11}{6}$	

