Program: BE Information Technology

Curriculum Scheme: Revised 2016
Examination: Second Year Semester III
Course Code: ITC302
Course Name: Logic Design
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	A BJT has $\alpha=0.99$. Find the value of β.
Option A:	100
Option B:	99
Option C:	200
Option D:	199
Q2.	The stability factor of voltage divider bias circuit depends on
Option A:	Beta value
Option B:	Beta and Base resistor value
Option C:	Beta, Base resistor and Collector resistor value
Option D:	Beta, Base resistor and Emitter resistor value
Q3.	Find the binary representation of (13.625) 10
Option A:	1101.101
Option B:	101.1101
Option C:	110.1101
Option D:	1011.101
Q4.	Convert (23.46) 8 to hexadecimal representation
Option A:	17.89
Option B:	31.48
Option C:	13.98
Option D:	32.64
Q5.	2 's complement of 98 is
Option A:	01100010
Option B:	10011101
Option C:	10011110
Option D:	01100011
Q6.	BCD code of 48 is
Option A:	00110000
Option B:	01001000
Option C:	11010000
Option D:	10000100

Q7.	Find Gray code of 101101101
Option A:	111011011
Option B:	011011011
Option C:	101101111
Option D:	100101001
Q8.	A fixed bias circuit has following parameters. Calculate its stability factor. Vcc $=15 \mathrm{~V}, \mathrm{Rc}=1 \mathrm{k} \Omega, \mathrm{R} \mathrm{R}=20 \mathrm{k} \Omega, \alpha=0.995$
Option A:	100
Option B:	99
Option C:	200
Option D:	199
Q9.	Which of the following is an universal gate
Option A:	AND
Option B:	OR
Option C:	EX-OR
Option D:	NAND
Q10.	In SOP (Sum of Products) form Level1 is of
Option A:	AND and OR
Option B:	AND and NAND
Option C:	OR and AND
Option D:	NOR and NAND
Q11.	Simplify $Y=\sum_{m}(0,3,4,7)$ using K-map
Option A:	$\bar{B} \bar{C}+B C$
Option B:	$A \bar{C}+B C$
Option C:	$\bar{A} \bar{C}+\bar{B} C$
Option D:	$A \bar{B}+B \bar{C}$
Q12.	Simplify $(A+\bar{B}+A B)(A+\bar{B})(\bar{A} B)$
Option A:	$A+\bar{B}$
Option B:	A
Option C:	0
Option D:	$\bar{A} \bar{B}$
Q13.	Which of the following is a 4-bit binary adder?
Option A:	IC7404
Option B:	IC7483
Option C:	IC7485
	IC7408

Q14.	What is the logical expression of the following circuit
Option A:	$\bar{A} \bar{B}+A B$
Option B:	$\bar{A} B+A \bar{B}$
Option C:	$A \bar{B}+A B$
Option D:	$\overline{A B}+A \bar{B}$
Q15.	How many 3-line-to-8-line decoders are required for a 1-of-32 decoder?
Option A:	1
Option B:	2
Option C:	4
Option D:	8
Q16.	Which of the following combinations cannot be combined into K-map groups?
Option A:	Corners in the same row
Option B:	Corners in the same column
Option C:	Overlapping combinations
Option D:	Diagonal corners
Q17.	In the given 4-to-1 multiplexer, if $\mathrm{c} 1=0$ and $\mathrm{c} 0=1$ then the output M is
Option A:	X_{0}
Option B:	X_{1}
Option C:	X_{2}
Option D:	X_{3}
Q18.	On a positive edge-triggered S-R flip-flop, the outputs reflect the input condition when
Option A:	The clock pulse is LOW

Option B:	The clock pulse is HIGH
Option C:	The clock pulse transitions from LOW to HIGH
Option D:	The clock pulse transitions from HIGH to LOW
Q19.	How many states does a decimal counter has?
Option A:	10
Option B:	11
Option C:	8
Option D:	16
Q20.	How many flip-flops are required to construct a decade counter?
Option A:	10
Option B:	8
Option C:	5
Option D:	4
Q21.	How can parallel data be taken out of a shift register simultaneously?
Option A:	Use the Q output of the first FF
Option B:	Use the Q output of the last FF
Option C:	Tie all of the Q outputs together
Option D:	Use the Q output of each FF
Q22.	Which is not characteristic of a shift register?
Option A:	Serial in/parallel in
Option B:	Serial in/parallel out
Option C:	Parallel in/serial out
Option D:	Parallel in/parallel out
Q23.	In VHDL, which of the following is the basic building block of a design?
Option A:	Architecture
Option B:	Entity
Option C:	Process
Option D:	Package
Q24.	Which of the following describes the structure of VHDL code correctly?
Option A:	Entity Declaration; Configuration; Library Declaration; Architecture Declaration
Option B:	Library Declaration; Configuration; Entity Declaration; Architecture Declaration
Option C:	Library Declaration; Entity Declaration; Architecture Declaration; Configurations
Option D:	Configuration; Library Declaration; Entity Declaration; Architecture Declaration
Q25.	Which of the following can be the name of an entity in VHDL?
Option A:	AND
Option B:	NAND
Option C:	NAND_gate
Option D:	NAND gate

