Program: SE

Curriculum Scheme: Revised 2016

Examination: Second Year Semester IV

Course Code: ETS401

Course Name: Applied Mathematics-IV
Time: 1 hour
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .
Laplace , inv laplace,matrices, lin alg, calculus

Q1.	The eigenvalues and eigenvectors of the following matrix are $\left[\begin{array}{lll} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right]$
Option A:	Eigen values : $2,2,2$ eigen vector: $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
Option B:	Eigen values :2,1,1 eigen vectors: $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
Option C:	Eigen values :2,1,0 eigen vectors: $\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
Option D:	Eigen values : $1,1,0$ eigen vectors: $\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$
Q2.	If $A=\left[\begin{array}{ll}1 & 8 \\ 2 & 1\end{array}\right]$ Find $2 A^{3}-A^{2}-35 A-44 I$
Option A:	$A-4 I$
Option B:	$A+I$
Option C:	$5 A+3 I$
Option D:	$15 A+7 I$
Q3.	If $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \& \mathrm{~B}=\left[\begin{array}{cc}2 & 0 \\ 1 / 2 & 2\end{array}\right]$ then
Option A:	A and B both are not diagonalisable
Option B:	A and B both are diagonalisable
Option C:	A is diagonalizable but B is not diagonalisable
Option D:	A isnot diagonalizable but B is diagonalisable

Q8.	The p.d.f. of a random variable X is given by $f(x)=k x^{2} e^{-x} ; x \geq 0$ then the variance of X is
Option A:	12
Option B:	9
Option C:	3
Option D:	4
Q9.	If X is a discrete random variable that follows Binomial Distribution with parameters $\mathrm{n}=12$ and $\mathrm{p}=\frac{1}{2}$ then $\mathrm{E}(\mathrm{X})=$
Option A:	3
Option B:	12
Option C:	6
Option D:	2
Q10.	If a random variable X follows Poisson Distribution such that $P(X=1)=2 P(X=2)$ then $P(X=3)$ is
Option A:	0.6134
Option B:	0.0613
Option C:	0.0512
Option D:	0.5123
Q11.	Evaluate $\int_{c} \frac{z d z}{(z-1)^{2}(z-2)} d z$ where $c:\|z-2\|=0.5$
Option A:	$4 \pi i$
Option B:	$2 \pi i$
Option C:	πi
Option D:	0
Q12.	Evaluate $\int_{c} \frac{\cos \pi Z^{2} d z}{\left(z^{2}-3 Z+2\right)} d z$ where $c:\|z\|=3$
Option A:	$8 \pi i$
Option B:	$10 \pi i$
Option C:	$4 \pi i$
Option D:	0
Q13.	If $f(z)$ is analytic and $f^{\prime}(z)$ is continuous at all points inside and on a simple closed curve C
Option A:	$\oint f(z) d z=0$
Option B:	$\oint f(z) d z \neq 0$

Option C:	$\oint f(z) d z=1$
Option D:	$\oint f(z) d z=2 \pi i$
Q14.	The singularities of $f(z)=\frac{(z+3) d z}{(z-1)(z-2)}$ are
Option A:	Z=0,2
Option B:	$\mathrm{Z}=2,-3$
Option C:	Z=1,-3
Option D:	$\mathrm{Z}=1,2$
Q15.	The residue of $f(z)=\frac{\left(1+e^{z}\right)}{\sin z+z \cos z}$ at pole $\mathrm{z}=0$ is
Option A:	0
Option B:	$4 \pi i$
Option C:	1
Option D:	-1
Q16.	Calculate the rank correlation co-efficient from the following data: $\begin{aligned} & \mathrm{X}: 15,20,28,12,40,60,20,80 \\ & \mathrm{Y}: 40,30,50,30,20,10,30,60 \end{aligned}$
Option A:	0.5429
Option B:	0.33
Option C:	0.2546
Option D:	0
Q17.	The normal equation for regression line y on x, by using least square method
Option A:	$\begin{aligned} & \sum y=n a+b \sum x \\ & \sum x y=a \sum x+b \sum x^{2} \end{aligned}$
Option B:	$\begin{aligned} & \sum x=n a+b \sum x \\ & \sum x y=a \sum x+b \sum x^{2} \end{aligned}$
Option C:	$\begin{aligned} & \sum x=n a+b \sum x \\ & \sum y=a \sum x+b \sum x^{2} \end{aligned}$
Option D:	none of these

Q18.	The sign of $\beta_{X Y}$ and $\beta_{Y X}$ which are two regression coefficient, they have				
Option A:	Same sign				
Option B:	Opposite sign				
Option C:	Either same or opposite sign				
Option D:	Nothing can be said				
Q19.	The lines of regression interest at the point				
Option A:	(X, Y)				
Option B:	(\bar{X}, \bar{Y})				
Option C:	$(0,0)$				
Option D:	$(1,1)$				
Q20.	The Regression Co-efficient y on x				
Option A:	$b_{y x}=\frac{\sigma_{x}}{\sigma_{y}}$				
Option B:	$b_{y x}=r \frac{\sigma_{x}}{\sigma_{y}}$				
Option C:	$b_{y x}=r \frac{\sigma_{y}}{\sigma_{x}}$				
Option D:	none of these				
Q21.	If $u=(3,4,-2) \quad V=(4,-2,1) \quad W=(1,-3,4)$ then $\|\|2 u-3 v+4 w\|\| \wedge 2$ is				
Option A:	81				
Option B:	89				
Option C:	11				
Option D:	13				
Q22.	Find a vector orthonormal to both $\mathrm{u}=(-6,4,2), \mathrm{v}=(3,1,5)$				
Option A:	(1,-2,-1)				
Option B:	(1,2,1)				
Option C:	$(1,2,-1)$				
Option D:	$(-1,2,-1)$				
Q23.	What can you say about the vector \\|	u+v\| \| \| \| u-v\\|			
Option A:	They are orthogonal				
Option B:	They are orthonormal				
Option C:	They are not orthogonal				
Option D:	They are orthogonal but not orthonormal				

Q24.	The Extremal of $\int_{X 1}^{X 2} \frac{y^{\prime} x^{2}}{x^{2}} d x$
Option A:	$\mathrm{y}=\mathrm{c} 1(\mathrm{x})^{\wedge} 3+\mathrm{c} 2$
Option B:	$\mathrm{y}=\mathrm{c} 1(\mathrm{x})^{\wedge} 2+\mathrm{c} 2 \mathrm{x}+\mathrm{c} 3$
Option C:	$\mathrm{y}=\mathrm{c} 1 \mathrm{x}+\mathrm{c} 2$
Option D:	$\mathrm{y}=\mathrm{c} 1(\mathrm{x})^{\wedge} 4+\mathrm{c} 2$
	In a distribution exactly normal 7\% of items are under 35 and 89% of the items are under 63 . Find the probability that an item selected at random lies between 45 and 56.
Q25.	0.4038
Option A:	Option B:
0.2038	
Option C:	0.8038
Option D:	0.1138

