Program: SE

Curriculum Scheme: Revised 2016

Examination: Second Year Semester III

Course Code:ECC/320

Time: 1 hour

Course Name: Electronics and devices circuit-I
Max. Marks: 50

Note to the students: - All the Questions are compulsory and carry equal marks.

Q1.	If the temperature of a diode increases, then leakage current and Base emitter voltage............
Option A:	Increases, Increases
Option B:	Decreases, decreases
Option C:	Decreases, Increases
Option D:	Increases, decreases
Q2.	Load Regulation should be \qquad and Line Regulation should be \qquad for good power Supply.
Option A:	as low as possible, as high possible
Option B:	as low as possible, as low possible
Option C:	as high as possible, as high possible
Option D:	as high as possible, as low possible
Q3.	If the a.c. input to a half-wave rectifier is an r.m.s value of $400 / \sqrt{ } 2$ volts, then diode PIV rating is. \qquad And efficiency is \qquad
Option A:	400V, 40.6\%
Option B:	400/ $\sqrt{2} 2 \mathrm{~V}, 40.6 \%$
Option C:	400V, 80.2\%
Option D:	400/ $22 \mathrm{~V}, 80.2 \%$
Q4.	The use of a capacitor filter in a rectifier circuit gives satisfactory performance only when the load Calculate ripple factor $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{C}=10 \mathrm{uf}, \mathrm{RL}=1 \mathrm{k} \Omega$
Option A:	current is high, 0.2886
Option B:	current is low, 0.2886
Option C:	current is high, 0.02886
Option D:	current is low, 0.02886
Q5.	Calculate IB base current and Ic collector current $\mathrm{Vcc}=9 \mathrm{~V}$ RB $=330 \mathrm{~K} \Omega \mathrm{RC}=1 \mathrm{~K} \Omega, \beta=100$ for fixed bias circuit.
Option A:	$25.15 \mu \mathrm{~A}, 2.5 \mathrm{~mA}$
Option B:	$2.5 \mu \mathrm{~A}, 2.5 \mathrm{~mA}$
Option C:	$25.15 \mu \mathrm{~A}, 25.15 \mathrm{~mA}$
Option D:	$2.6 \mu \mathrm{~A}, 26 \mathrm{~mA}$

Q6.	In JFET IDSS=7mA, Vp=-2.5V, Vgs=-1.2V, find ID drain current and gm0.
Option A:	$2.34 \mathrm{~mA}, 6.5 \mathrm{~ms}$
Option B:	$1.89 \mathrm{~mA}, 5.6 \mathrm{~ms}$
Option C:	$3.64 \mathrm{~mA}, 5.6 \mathrm{~ms}$
Option D:	0 , infinite
Q7.	For a given circuit if CE capacitor is removed, what is an effect on voltage gain and input impedance.
Option A:	Voltage gain increases, Input impedance increases
Option B:	Voltage gain decreases, Input impedance increases
Option C:	Voltage gain increases, Input impedance decreases
Option D:	Voltage gain decreases, Input impedance decreases
Q8.	For a given Amplifier Calculate voltage gain, IDSS=7mA, Vp=-2.5V $\operatorname{Vgs}=1.6 \mathrm{~V}, \mathrm{gm0}=5600 \mu \mathrm{~s}, \mathrm{Rg}=1 \mathrm{M} \Omega, \mathrm{Rd}=2 \mathrm{~K} \Omega, \mathrm{RL}=10 \mathrm{~K} \Omega$
Option A:	-3.36
Option B:	4.032
Option C:	20.16
Option D:	5.06
Q9.	Calculate output resistance of an amplifier circuit. (use circuit of Q.8)
Option A:	$10 \mathrm{~K} \Omega$
Option B:	$1.667 \mathrm{~K} \Omega$
Option C:	$2 \mathrm{k} \Omega$

Option D:	Infinite	
Q10.	Select features of Common collector Amplifier. (more than one answer correct)	
Option A:	used as an amplifier	
Option B:	Output resistance low, Input resistance high	
Option C:	Voltage gain =1	
Option D:	Output resistance high, Input resistance low	
Q11.	In CE amplifier RE bypassed if load resistor is given, Voltage gain is given by	
Option A:	$\beta \mathrm{RC} / \mathrm{r} \pi$	
Option B:	$-\beta(\mathrm{RC}\| \| R L) / r \pi$	
Option C:	- β RC/r $/ \mathrm{m}$	
Option D:	- β RC / (rm \|	RL)
Q12.	Q point is affected by temperature. Temperature dependent parameters are	
Option A:	β	
Option B:	VBE	
Option C:	ICBO, $\boldsymbol{\beta}$	
Option D:	VBE,ICBO, β	
Q13.	BJT is current controlled device	
Option A:	IC current depends on IB current	
Option B:	IB current depends on IC current	
Option C:	IC current depends on VBE voltage	
Option D:	IB current depends on VBE voltage	
Q14.	To use JFET as an amplifier, it should be biased in	
Option A:	Saturation Region	
Option B:	Ohmic region	
Option C:	Linear region	
Option D:	Cut off region	
Q15.	For a given Amplifier, calculate voltage gain of an amplifier. $r \pi=1.5 \mathrm{~K} \Omega, \beta=120$	

Option A:	184.61
Option B:	800
Option C:	160
Option D:	190
Q16.	For a circuit given in Q .15 calculate output resistance
Option A:	$2 \mathrm{~K} \Omega$
Option B:	10Kת
Option C:	$1.96 \mathrm{k} \Omega$
Option D:	Infinite
Q17.	Calculate IB for a circuit shown
Option A:	$33.125 \mu \mathrm{~A}$
Option B:	33.125 mA

Option C:	6.625 mA
Option D:	$6.625 \mu \mathrm{~A}$
Q18.	Calculate stability factor for given specifications $\mathrm{Vcc}=9 \mathrm{~V} \mathrm{RB}=330 \mathrm{~K} \Omega \mathrm{RC}=1 \mathrm{~K} \Omega, \beta=100$ for fixed bias circuit.
Option A:	1
Option B:	Infinite
Option C:	100
Option D:	101
Q19.	To pass audio signal through an Amplifier select a suitable corner frequency
Option A:	$\mathrm{F}_{\mathrm{H}}=20 \mathrm{~Hz}, \mathrm{FL}=20 \mathrm{KHZ}$.
Option B:	$\mathrm{F}_{\mathrm{H}}=200 \mathrm{KHz}, \mathrm{FL}=2 \mathrm{KHZ}$.
Option C:	$\mathrm{F}_{\mathrm{H}}=20 \mathrm{kHz}, \mathrm{FL}=20 \mathrm{HZ}$.
Option D:	$\mathrm{F}_{\mathrm{H}}=\infty \mathrm{Hz}, \mathrm{FL}=0 \mathrm{HZ}$.
Q20.	Calculate lower cut-off frequency F_{LC} if $\mathrm{C}_{3}=1 \mu \mathrm{f}$ for a given circuit.
Option A:	OHZ
Option B:	1.3HZ
Option C:	3.1 HZ
Option D:	∞ HZ
Q21.	Gain reduction in a low frequency region is due to

Option A:	Coupling Capacitor
Option B:	Bypass Capacitor
Option C:	Coupling Capacitor and Bypass Capacitor
Option D:	Coupling Capacitor or Bypass Capacitor
Q22.	Which of the following condition is true for cut-off mode in transistor?
Option A:	The collector current Is zero
Option B:	The collector current is proportional to the base current
Option C:	The base current is nonzero
Option D:	All the mentioned
Q23.	While designing voltage Amplifier using BJT which of the following biasing technique is used?
Option A:	Voltage divider bias
Option B:	Fixed bias
Option C:	Collector to base bias
Option D:	Self-bias
Q24.	Select the configuration from the following for AV = 100, Ri = 1 MS
Option A:	CE Amplifier
Option B:	CE Amplifier RE un bypassed
Option C:	CS Amplifier
Option D:	CB Amplifier
Q25.	Condition for Zero Temperature drift is
Option A:	\mid VP \mid - \|VGS $\mid=0.63$
Option B:	$\|V P\|$ - \|VGS $\mid=0.36$
Option C:	$\|V G S\|-\|V P\|=0.63$
Option D:	VP - VGS = 0.63

