Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Revised 2016

Examination: Third Year Semester V

Course Code: ECC503 and Course Name: Electromagnetic Engineering

Time: 1hour

Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	Choose and justify what will be the new force, if the charges are moved to a medium
	having $\varepsilon r = 6$ without changing the distance between them.
Option A:	will increase by 6 times
Option B:	will decrease by 0.166 times
Option C:	will decrease by $\sqrt{6}$ times
Option D:	will increase by 36 times
Q.2	Determine the flux density if sheet of charge density is 25 C/m ² .
Option A:	3.125
Option B:	6.25
Option C:	12.5
Option D:	25
Q.3	Three charged cylindrical sheets $\rho l1 = 5$ c/m at R = 6m, $\rho l2 = -6$ C/m at R = 7m and
	$\rho l3 = -7$ C/m at R = 8m. Find the flux density at R = 1m.
Option A:	3
Option B:	2
Option C:	1
Option D:	0
Q.4	Calculate is the electric field intensity at a distance of 2m from a charge 4nC in
	vacuum?
Option A:	8982V/m
Option B:	7982V/m
Option C:	8992V/m
Option D:	7992V/m
Q.5	Find the potential at origin if Six equal point charges $Q = 5nC$ are located at 1,2,3,4,5,6,
	m.
Option A:	120 volts
Option B:	110 volts
Option C:	100 volts
Option D:	90 volts
Q.6	The work done by a charge of 100μ C with a potential 2.78 volts is μ joule
Option A:	178
Option B:	278

Option C:	378
Option D:	478
1	
Q7.	Find the field intensity after reflection. The reflected wave is at an angle of 60 degree. A
	wave incident on a surface at an angle 30 degree is having field intensity of 3 units
Option A:	5.46
Option B:	4.46
Option C:	6.46
Option D:	3
	46
08.	Calculate the attenuation constant of a conductor of conductivity 100 units, frequency
	1000 radian/s in air.
Option A:	0.25
Option B:	0.5
Option C:	0.75
Option D:	1
option D:	
09.	For a low loss line when both conductor and di-electric loss is small, the assumption
X	that could be made is:
Option A:	$R < < \omega L$ and $G < < \omega C$
Option B:	$R > \omega L$ and $G > \omega C$
Option C:	$R < \omega C$ and $G < \omega L$
Option D:	$R > \omega C$ and $G > \omega L$
Q10.	Calculate the velocity of a wave with frequency 4×10^9 rad/s and phase constant of 2×10^9
	10° units.
Option A:	50
Option B:	5
Option C:	20
Option D:	2
0.1.1	
Q11.	Electric field and magnetic field intensities in electromagnetic wave are 10 and 6
	respectively calculate the power
Option A:	
Option B:	30
Option C:	60
Option D:	90
012	Le stars autorite de la la la la servicio de la 15 O en 14.
Q12.	In a two-port network, the total impedance was measured to be $/5 \Omega$ and the abaracteristic impedance of the transmission line was measured to be 100Ω . Then the
	reflection coefficient at the load and is:
Ontion A:	
Option A:	-0.142
Option D:	7
Option C:	-/
Option D:	0.2343
012	The characteristic impodence of transmission line is 2200 (O at a feature of 6000 MI
013.	\pm the characteristic impedance of transmission line is 7 My 6 U at a frequency of X00MHz \pm
	At this fragmancy the propagation constant is $0.054(0.0266 \pm i0.00)$. Determine B

Option A:	5.56 Ω
Option B:	6.56 Ω
Option C:	8.56 Ω
Option D:	7.56 Ω
Q14.	A 100 Ω microstrip line is connected to 75 Ω line. Determine SWR.
Option A:	1.33
Option B:	2.5
Option C:	0.36
Option D:	0.75
Q15.	An open wire telephone line has R =10 Ω /km, L =0.0038 H/km, C= 0.0088 * 10^-6 F/km and G= 0.45* 10^-6. Determine characteristic impedance (Z ₀).
Option A:	674 ∠ 35.37
Option B:	674 ∠ -35.37
Option C:	74 ∠ 35.37
Option D:	574 ∠ 35.37
016.	Find the Maxwell equation derived from Faraday's law.
Option A:	Div(H) = J
Option B:	Div(D) = I
Option C:	Curl(E) = -dB/dt
Option D:	Curl(B) = -dH/dt
option 2.	
017.	Find the charge density when the electric flux density is given by $2x i + 3y i + 4z k$.
Option A:	
Option B:	9
Option C:	24
Option D:	
option 2.	
Q18.	What is the type of quantizer, if a Zero is assigned a quantization level?
Option A:	Midrise type
Option B:	Mid tread type
Option C:	Mistreat type
Option D:	None of the mentioned
Q19.	In the charge free medium, the divergence of the electric flux density will be
Option A:	0
Option B:	1
Option C:	-1
Option D:	Infinity
Q20.	For a finite length conductor of radius 10cm and current 2A in air. What will be the magnetic flux density
Option Δ .	7×10^{-6}
Option R.	4×10^{-6}
Option D .	

Option C:	6 x10 ⁻⁶
Option D:	5 x10 ⁻⁶
Q21.	Find the Maxwell law derived from Ampere law.
Option A:	$\operatorname{Div}(I) = H$
Option B:	$\operatorname{Div}(H) = J$
Option C:	Curl(H) = J
Option D:	d) $Curl(B) = D$
Q22.	The wave impedance of air for a wave propagating in it is:
Option A:	377 Ω
Option B:	345 Ω
Option C:	$4\pi * 10^{-7} \Omega$
Option D:	477 Ω
Q23.	Graphene consists
Option A:	entirely of carbon
Option B:	of 80% carbon and 20% silicon
Option C:	of 80% carbon, 10% silicon and 10% unidentified yet
Option D:	of 80% carbon, 20% unidentified yet
Q24.	Typically, all ESD sensitive (ESDS) items should be handled:
Option A:	Only when room ionization is utilized
Option B:	Only at an ESD control workstation
Option C:	ESDS items should never be handled
Option D:	ESDS items should be handled
Q25.	The principle of dynamically induced emf is utilized in a
Option A:	choke.
Option B:	generator.
Option C:	Transformer.
Option D:	Thermocouple.