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Abstract—Predicting stock market prices is one of the
most complex task that traditionally involves extensive human-
computer interaction. Due to the correlated nature of stock
prices, conventional batch processing methods cannot be utilized
efficiently for stock market analysis. We propose an online learn-
ing algorithm that utilizes a kind of recurrent neural network
(RNN) called Long Short Term Memory (LSTM), where the
weights are adjusted for individual data points using stochastic
gradient descent. This will provide more accurate results when
compared to existing stock price prediction algorithms. The
network is trained and evaluated for accuracy with various
sizes of data, and the results are tabulated. A comparison with
respect to accuracy is then performed against an Artificial Neural
Network.

Index Terms—Stock market prediction, Sentiment analysis,
Machine learning, training dataset.

I. INTRODUCTION

The stock market is a very vast array of investors and traders
who buy and sell stock, pushing the price up or down to gain
profit. The prices of stocks are governed by the principles of
demand and supply, and the ultimate goal of buying shares is to
make money by buying stocks in companies whose recognized
value (i.e., share price) is expected to rise. Stock markets are
closely linked with the world of economics —the rise and
fall of share prices can be traced back to some ideology - Key
Performance Indicators (KPI’s). The five most commonly used
KPI’s are the opening stock price (‘Open’), end-of-day price
(‘Close’), intraday low price (‘Low’), intra-day peak price
(‘High’), and total volume of stocks traded during the day
(‘Volume’).
Economics and stock prices are mainly reliant upon subjective
perceptions about the stock market. It is near impossible to
predict stock prices to the T, owing to the volatility of factors
that play a major role in the movement of prices. However, it is
possible to make an educated estimate of prices. Stock prices
never vary in isolation: the movement of one tends to have an

avalanche effect on several other stocks as well [2]. This aspect
of stock price movement can be used as an important tool to
predict the prices of many stocks at once. Due to the sheer
volume of money involved and number of transactions that
take place every minute, there comes a trade-off between the
accuracy and the volume of predictions made; as such, most
stock prediction systems are implemented in a distributed yet
parallelized fashion [7]. These are some of the considerations
and challenges faced in stock market analysis and solution to
this is still being found.

II. LITERATURE SURVEY

The initial focus of our literature survey was to explore
generic online learning algorithms and see if they could be
adapted to our use case i.e., working on real-time stock price
data which included Online AUC Maximization [8], Online
Transfer Learning [9], and Online Feature Selection [1].

However, as we were not able to find any potential adap-
tation of these for stock price prediction, we then decided to
look at the existing systems [2], analyze the major drawbacks
of the same, and see if we could improve them in anyway. We
zeroed in on the correlation between stock data (in the form
of dynamic, long-term temporal dependencies between stock
prices) as the key issue that we wished to solve. A brief search
of generic solutions to the above problem led us to RNN’s [4]
and LSTM [3]. After deciding to use an LSTM neural network
to perform stock prediction, we consulted a number of papers
to study the concept of gradient descent and its various types.
We concluded our literature survey by looking at how gradient
descent can be used to tune the weights of an LSTM network
[5] and how this process can be optimized. [6].

From a negative tweet, the classifier would be more likely to
classify other tweets containing the word “bad” as negative.
Likewise, a bigram is a N-gram of size two and a trigram
is a N-gram of size three. That means that in the case of
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bigrams the feature vector for the classifier is made of a
two-word combinations and in the case of trigrams is made
of a three-word combinations respectively. For example, if a
negative tweet contains the combination “not perfect”, in the
case of the bigram feature extraction it would be classified
as a negative tweet. Instead, if only unigram features were
used, the tweet would have been classified as positive since
the term “not” has a neutral sentiment and the word “perfect”
a positive one. B. Feature Filtering With the method described
above, the feature set grows larger and larger as the dataset
increases leading to the point were it becomes difficult and
unnecessary to use every single unigram, bigram, and trigram
as a property to train our classifier. So we decided to use
only the n most significant features for training. We used a
chi-squared test, Pearson’s chi-squared test in particular, to
score each unigram, bigram, and trigram in our training set.
NLTK helped us to determine the frequency of each feature.
Having, now, the features ordered by score, we selected
the top-10000 to use for training and classification. This
method undeniably speeded up our classifiers and reduced
the amount of memory used.Traditional approaches to stock
market analysis and stock price prediction include fundamental
analysis, which looks at a stock’s past performance and
the general credibility of the company itself, and statistical
analysis, which is solely concerned with crunching of numbers
and to identifying patterns in stock price variation. The latter
is commonly achieved with the help of Genetic Algorithms
(GA) or Artificial Neural Networks (ANN’s), but these fail
to capture correlation between stock prices in the form of
long-term temporal dependencies. Another major issue with
using simple ANNs for stock prediction is the phenomenon of
exploding / vanishing gradient[4], where the weights of a large
network either become too large or too small (respectively),
drastically slowing their convergence to the required optimal
values. This is typically caused by two factors: weights are
initialized randomly, and the weights closer to the end of the
network also tend to change a lot more than those at the
beginning. An alternative approach to stock market analysis
is to reduce the dimensionality of the input data [2] and apply
algorithms such as feature selection to shortlist a core set of
features (such as GDP, oil price, inflation rate, etc.) that have
the greatest impact on stock values or currency exchange rates
across markets [10]. However, this method does not consider
long term trading strategies as it fails to take the entire history
of trends into account i.e. it fails to process all historical data;
furthermore, there is no provision for outlier detection.

A. DATASET

We extracted tweets using Twitter’s Search API and pro-
cessed them for further analysis, which included Natural Lan-
guage Processing (NLP) and Sentiment Analysis. Thereafter,
we applied neural network to predict each tweet’s sentiment.
By evaluating each model for its proper sentiment classifica-
tion, we discovered that neural network give higher accuracy
through cross validation. In spite of this fact, we continued
to take into consideration both techniques and compare every

time their accuracy. After predicting every tweet’s sentiment,
we extracted historical stock data using Yahoo finance API.
We then created a matrix for stock market prediction using
sentiment score and stock price’s change for each day and at
the end we proposed our own trading strategy.

III. IMPLEMENTATION

We used two live datasets: Stock Prices obtained using
Yahoo! Finance API. This dataset consists of the Open,
Close, High and Low values for each day. • We obtained
also a collection of tweets using Twitter’s Search API. For
each tweet these records provide a tweet id, the timestamp
and tweet text, which is by design limited to 140 characters
and needs to be filterated from noise. Since we perform
our prediction and analysis on a daily basis, we saperate
the tweets by days using the timestamp as the main index
of the dataframe. Stock Data Preprocessing The data we
collected from Yahoo! Finance had to be preprocessed
in order to become suitable for further reliable analysis.
The main problem we faced was that while the Twitter
data were available for each day of the week, including
weekends, the stock values were not present for weekends
and other holidays when the market is closed. In order to
fill the missing values, we overcame this problem by using
a simple statistical function. If the value that is missing is
y, the prior known value is xprevious and the next known
value is xnext, then the value y will be: y = (xprevious +
xnext)/2. This approximation works most of the time very
well except in cases of unexpected rapidly rise and fall.
Furthermore, we create two additional fundamental metrics:
HLP CT = HighLow Low P CT change = CloseOpen Open
HLPCT stands for ”High-Low Percentage” and PCTchange
for ”Percentage change”. Both metrics are important for the
machine learning algorithm which we applied in order to find
the correlation between tweets and stock market. Twitter Data
Preprocessing For the process of collecting tweets, Twitter
provides two possible ways to gather Tweets: the Streaming
API or the Search API. The Streaming API allows users to
obtain realtime access to tweets from an input query. The
user first requests a connection to a stream of tweets from
the server. Then, the server opens a streaming connection
and tweets are streamed accordingly. However, there are a
few drawbacks of the Streaming API. First, language is not
specified, resulting in a stream that contains Tweets of all
languages, including a few non-Latin based alphabets, that
complicates further analysis. Because of these problems,
we decided to go with the Twitter Search API instead. The
Search API is a REST API which allows users to request
specific queries of up to date tweets. The Search API allows
filtering based on language, region, geolocation and time.
There is a rate limit linked with the query, but we handle
it in the code. The request give a list of JSON objects that
contain the tweets and their metadata. This includes a variety
of information, which includes username, time, location,
retweets, and more. For our needs, we mainly focus on the
time and tweet text. We filter out the unnecessary metadata
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and store both the tweet text and its timestamp in a .txt file.
We use query the ticker of the company in front of which we
add a dollar sign to gather the most “financial” tweets. Both
of these APIs require an API key for authentication by the
user. Once authenticated, we were able to easily access the
API through a library called “Tweepy”, which is a wrapper
for the Twitter API.

IV. EXISTING SYSTEMS AND THEIR DRAWBACKS

Traditional approaches to stock market analysis and stock
price prediction include fundamental analysis, which looks
at a stock’s past performance and the general credibility of
the company itself, and statistical analysis, which is solely
concerned with number crunching and identifying patterns in
stock price variation. The latter is commonly achieved with
the help of Genetic Algorithms (GA) or Artificial Neural
Networks (ANN’s), but these fail to capture correlation
between stock prices in the form of long-term temporal
dependencies. Another major issue with using simple ANNs
for stock prediction is the phenomenon of exploding /
vanishing gradient[4], where the weights of a large network
either become too large or too small (respectively), drastically
slowing their convergence to the optimal value. This is
typically caused by two factors: weights are initialized
randomly, and the weights closer to the end of the network
also tend to change a lot more than those at the beginning.
An alternative approach to stock market analysis is to
reduce the dimensionality of the input data [2] and apply
feature selection algorithms to shortlist a core set of features
(such as GDP, oil price, inflation rate, etc.) that have the
greatest impact on stock prices or currency exchange rates
across markets [10]. However, this method does not consider
longterm trading strategies as it fails to take the entire history
of trends into account; furthermore, there is no provision for
outlier detection.

V. PROPOSED SYSTEM

A. LSTM Memory cell

LSTM’s are a special subset of RNN’s that can capture
context-specific temporal dependencies for very large periods

of time. Each LSTM neuron is a memory cell that can
store other information i.e., it has and maintains its own cell
state. While neurons in normal RNN’s merely take in their
previous hidden state and the current input to output a new
hidden state, an LSTM neuron also takes in its old cell state
and gives outputs of its new cell state. An LSTM memory
cell, as depicted in Figure 1, has the following three major
components, or which are frequently referred to as gates:

1) Forget gate: the forget gate decides when specific por-
tions of the cell state are to be updated with more recent
information. It outputs values close to 1 for parts of the
cell defines that should be retained, and zero for values
that should be neglected and hence removed.

2) Input gate : based on the input (i.e., previous output o(t-
1), input x(t), and previous cell state c(t-1)), this section
of the network learns the conditions under which any
information should be stored (or updated) in the cell
state

3) Output gate: depending on the input and cell state, this
portion decides what information is propagated forward
(i.e., output o(t) and cell state c(t)) to the next node in
the network.

Thus, LSTM networks are ideal for exploring how variation
in one stock’s price can affect the prices of several other
stocks over a large period of time. They can also decide (in
a dynamic fashion) for how long information about specific
past trends in stock price movement needs to be retained in
order to more precisely predict future trends in the variations
of stock and its values. The main benefit of an LSTM is its
ability to learn context specific temporal dependence. Each
LSTM unit remembers and stores information for either a
large or a small period of time (hence the name) without
explicitly using an activation function within the recurrent
components. An important fact to note is that any cell state is
multiplied only by the result of the forget gate, which varies
between 0 and 1. That is, the forget gate in an LSTM cell is
responsible for both the weights and the activation function
of the cell for current state. Therefore, information from cell
at previous state can pass through a cell unchanged instead
of varying i.e. increasing or decreasing exponentially at each
time-step or layer, and the weights can converge to their
most optimal values in a very reasonable amount of time.
This allows LSTM’s to solve the vanishing gradient problem
– since the value stored in a memory cell isn’t iteratively
modified, the gradient does not vanish when trained with
back propagation. Additionally, LSTM’s are also relatively
insensitive to gaps (i.e., time lags between input data points)
compared to other RNN’s.

Terminologies used below is a brief summary of the diffrent
terminologies relating to our proposed stock prediction system:

1) Training set : subsection of the original data that is used
to train the network model for predicting the output
values

2) Test set : part of the original data that is used to make
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predictions of the output value, which are then compared
with the actual values to evaluate the performance of the
model

3) Validation set : part of the original data that is used to
tune the parameters of the neural network model

4) Activation function: in a neural network, the activation
function of a node gives the output of that node as a
weighted sum of inputs.

5) Batch size : number of samples that must be changed by
the model before updating the weights of the parameters

6) Epoch : a complete pass through the given dataset by
the training algorithm that is applied.

7) Dropout: a technique where randomly selected neurons
are ignored during training i.e., they are “dropped out”
randomly. Hence, their help to the activation of down-
stream neurons is temporally taken out on the forward
pass, and any weight updates are not applied to the
neuron on the backward pass.

8) Loss function : a function, defined on a data point, pre-
diction and label, that measures a penalty such as square
loss which is mathematically explained as follows:

l(f(xi), (yi)) = (f(xi)− (yi))
2 (1)

9) Cost function: a sum of loss functions over the training
dataset. Mean Squared Error (MSE) is an example,
which is mathematically explained as follows:

MSE() = Ni = l(f(xi), (yi)) = (f(xi)− (yi))
2 (2)

10) Root Mean Square Error (RMSE): measure of the dif-
ference between values predicted by a model and the
values actually observed. It is calculated by taking the
summation of the squares of the differences between the
predicted value and actual value, and dividing it by the
number of samples. It is mathematically expressed as
follows: √∑

(ypredicted − yactual)2

n
(3)

VI. SENTIMENT ANALYSIS

The text of each tweet includes a lot of words that
are unrelated to its sentiment. For example, some tweets
contain URLS, tags to other users, or symbols that have no
interpretation. In order to better determine a tweet’s sentiment
score, before anything else we had not consider the “noise”
that occurred because of these words. For this to happen, we
are dependent on a variety of techniques using the Natural
Language ToolKit (NLTK)

A. Tokenization

Firstly, we divided the text by spaces, thus forming a list
of separate words per tweet. We then used each word in the
tweet as features to train the classifier.

B. Removing Stopwords

Next, we removed stopwords from the list of words Natural
Language ToolKit library contains a stopwords dictionary,
which is a list of words that have neutral meaning and are
inappropriate for sentiment analysis. To remove the stopwords
from each text, we simply inspect each word in the list
of words against the dictionary. If a word was in the list,
we excluded it from the tweet’s text. The list of stopwords
contains articles, some prepositions, and other words that add
no sentiment value (able, also, on, behind etc.)

C. Twitter Symbols

It is common that tweets may contain extra symbols such as
“@” or “” as well as URLs. On Twitter, the word following an
“@” (mentions) symbol is always a username, which we also
not include because it adds no value at all to the text. Words
following “” (hashtags) are not filtered out because they may
contain critical information about the tweet’s sentiment. They
are also specifically useful for categorization since Twitter
creates new databases that are collections of similar tweets,
by using hashtags. URLs are filterated entirely, as they add no
sentiment meaning to the text and could also be spams.

D. Training set Collection

To train a sentiment analyser and obtain data, we were in
need of a system that could gather tweets. Therefore, we first
collected a large amount of tweets that would serve as training
data for our sentiment analyser. At the start , we considered
manually tagging tweets with a “positive” or “negative” label.
Thus we created a list of 1000 hand-classified tweets but
because it was difficult and time-consuming, we decided to
look for a database with previously sentiment-classified tweets.
Surprisingly, we found that our search for other tweet corpuses
returned no results, as Twitter had recently modified its terms
of service to not allow public hosting of old tweets. Under
these circumstances, we turned to other methods in order to
form a training set. Precisely, we had two main ideas on
how to classify tweets as training data. According to the
first idea we created a “positive” and a “negative” dataset
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for training, by using Twitter’s Search API. Each dataset was
created programmatically and was followed by positive and
negative queries on emoticons and keywords: Any tweet that
included one or more of these keywords or emoticons was
most likely to be of that corresponding sentiment. This resulted
in a training set of “positive” and “negative” tweets which was
nearly as good as tagging tweets by hand. The second idea
was that we could maybe utilize a sentiment lexicon in order
to classify the gathered tweets. The one we selected was the
external lexicon AFINN[4], which is a list of English words
rated for valence with an integer between minus five and plus
five.

E. Training the classifiers

Once we had collected a large tweet corpus as training
data, we were able to build and train a classifier. Within this
project we used two types of classifiers: We chose to focus
on these algorithms because according to [5], they are the
state of the art for Sentiment Analysis. For both classifiers,
we took out the same features from the tweets to classify
on. A. Feature Extraction. A unigram is a N-gram of size
one. For each exclusive tokenized word in a tweet, a unigram
feature is created for the classifier. In case , if a negative tweet
contains the word “bad”, a feature for classification would be
whether or not a tweet contains the word “bad”. Since the
feature came from a negative tweet, the classifier would be
more likely to classify other tweets containing the word “bad”
as negative. Likewise, a bigram is a N-gram of size two and
a trigram is a N-gram of size three. That means that in the
case of bigrams the feature vector for the classifier is made of
a two-word combinations and in the case of trigrams is made
of a three-word combinations respectively. For example, if a
negative tweet contains the combination “not perfect”, in the
case of the bigram feature extraction it would be classified
as a negative tweet. Instead, if only unigram features were
used, the tweet would have been classified as positive since
the term “not” has a neutral sentiment and the word “perfect”
a positive one. B. Feature Filtering With the method described
above, the feature set grows larger and larger as the dataset
increases leading to the point were it becomes difficult and
unnecessary to use every single unigram, bigram, and trigram
as a property to train our classifier. So we decided to use only
the n most significant features for training. We used a chi-
squared test, Pearson’s chi-squared test in particular, to score
each unigram, bigram, and trigram in our training set. NLTK
helped us to determine the frequency of each feature. Having,
now, the features ordered by score, we selected the top-10000
to use for training and classification. This method undeniably
speeded up our classifiers and reduced the amount of memory
used.

VII. CONCLUSION AND FUTURE WORK

The results of comparison between Long Short Term Mem-
ory (LSTM) and Artificial Neural Network (ANN) show that
LSTM has a better prediction accuracy than ANN. Stock
markets are very difficult to monitor and require plenty of

context when trying to interpret the movement and predict
prices. In ANN, each hidden node is simply a node with
a single activation function, while in LSTM, each node is
a memory cell that can store contextual information. Thus
LSTMs perform better as they are able to keep track of the
context-specific temporal dependencies between stock prices
for a longer period of time while performing predictions.Also
an analysis of the results also indicates that both models give
better accuracy when the size of the input dataset increases.
With more data, more patterns can be produced by the model,
and the weights of the layers can be better adjusted. Thus at
its core, the stock market is a reflection of human emotions.
We also investigated whether public sentiment, as measured
from tweets, is correlated or even predictive of stock values
and specifically for 16 of the most popular tech companies
according to Yahoo! Finance. Our results show that changes
in the public sentiment can affect the stock market. That means
that we can indeed predict the stock market with high chances.
Furthermore, it is worth mentioning that our analysis does not
take into consideration many factors. Pure numbers crunching
and analysis have their own drawbacks; a possible extension
of this stock prediction system would be to augment it with
a news feed analysis from social media platforms such as
Twitter, where emotions are gauged from the articles. This
sentiment analysis can be linked with the LSTM to better train
weights and further improve accuracy. There are many areas in
which this work could be expanded in the future. With a longer
period of time and more resources, there is much potential in
the field. Finally, in the future we could create a stock lexicon
based on the most common words used.
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