
Natural Language Sentence to SQL Query 

Converter 
 

Dhairya Chandarana 
Department of Information Technology Vidyavardhini’s 

College  of Engineering and Technology 

Mumbai, India  

 

Mohit Mathkar 
Department of Information Technology Vidyavardhini’s 

College  of Engineering and Technology 

Mumbai, India  

 

Prof. Anagha Patil 
Department of Information Technology Vidyavardhini’s 

College of Engineering and Technology 

Mumbai, India  

 

Deepchand Dubey 
Department of Information Technology Vidyavardhini’s 

College  of Engineering and Technology 

Mumbai, India 

 

 
 

 

 

 

  

  

 

     
  

  

 

 

  

         

  

 

       

  

  

   

       

  

 

Abstract—Nowadays,the information in the IT sector is grow-
ing tremendously at a high speed. A large portion of the infor-
mation is stored in the databases, mostly in relational databases.
Such relational databases uses a special query language called
Structured Query Language (SQL) in order to access or manip-
ulate the data stored in them. Due to this, it becomes difficult
for non-expert users to fetch data from relational databases, as
they have no knowledge about SQL. Thus a need arises for a
simple and efficient software model that can solve this problem
of getting data easily from databases. This paper presents an
approach to building such a system that uses natural language
instead of SQL to retrieve data. We are building this system
using Natural Language Processing and Deep Learning which is
capable of understanding user questions and generating complex
queries. This helps technical or non-technical people to easily
access the database and get desired data without knowing much
about SQL.

Index Terms——SQL, Natural Language Processing, Syntactic,
Semantic, Data Dictionary

I. INTRODUCTION

Individuals around the globe, collect, stock, and use huge
bulks of data daily, through their computers. These data may
be found on computers or cloud storage and can access them
remotely from another computer using the internet. A database
or data warehouse is the repository storage system that is
used to store such data. A Database Management System
(DBMS) is used to manage and control the data stored in
databases. Structured Query Language (SQL) is a special
type of language that is used to access data from RDBMS.
A lot of research has been carried out for using Natural
Language (NL) in place of Structured Query Language to
resolve the problem of SQL for non-professional users, which
has initiated the building of a special framework called Natural

Language Interface to Database (NLIDB). It is a part of a more
considerable method called Natural Language Processing, or
NLP in short. The main aim behind the Natural Language
Processing based research is to develop an application based
software model that is simple and user friendly.

II. OVERVIEW

The project aims to build a Natural Language Interface
to Database (NLIDB) System. In this, when the user inputs
a query in the form of natural language, the system will
then first convert the query in a form that the Database
Management System will accept, i.e. SQL. It then executes
the generated SQL query and return the actual result to the
user. Such a type of system can be used in various applications
such as Intelligent ChatBot, Robotics, Business Intelligence,
Departments which need data but don’t have SQL knowledge.

III. LITERATURE SURVEY

The endeavor in Natural language interface area commenced
back in the fifties. At the start of the seventies, Prototype
systems had appeared. The pattern matching was the method
used for mapping the query from the user to the database
by those systems. Formal list processor (FLIP), a language
for pattern-matching formed on the LISP framework operates
in a manner that if the given input fits in those patterns, in
that case, the program will generate a query for the database.
The idea to develop the interface instigated new issues to the
designers because of the usage of databases that had spread
in the 1970s.

Amongst many, the usage of natural language processing
was one of the methods, wherein the client is allowed to

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

467

www.ijert.org
I_JAISWAL
219_Natural Language Sentence to SQL Query Converter

I_JAISWAL
AreaHighlight

I_JAISWAL
AreaHighlight

I_JAISWAL
AreaHighlight



examine and analyze the given information. Systems had been
built over the years which focus only on a specific database
to serve a specific purpose [10]. Some of those systems are
explained below.

A. The LUNAR System

The questions regarding the samples of rocks obtained back
from the moon were answered by The LUNAR system and
it was introduced during 1971. Two Databases were used
by the lunar framework to achieve its functionality. Among
the two, one was for chemical analysis and the other one
was for literature references. An ATN(Augmented Transition
Network ) parser and Woods Procedural Semantics was used
by the LUNAR framework. The performance of the LUNAR
System was quite amazing as it managed to control 78 percent
of requests without reporting any significant problems. If
dictionary mistakes were corrected, this proportion increased
to 90 percent. But these statistics may be misleading since the
system has not been used intensively because of its linguistic
capabilities limitation.

B. Ladder

The LADDER program has been developed as a natural
language interface for a U.S. Navy ship knowledge database.
It uses the technique of semantic grammars, in which the
semantic and syntactic processing is left inter-leaved. It parses
the input and creates a parse tree, which is then mapped to the
database query. [13]. A three-layered design is used to build
the LADDER system. One of the features of this system is the
Informal Natural Language Access to Navy Data (INLAND),
which accepts natural language questions and allows databases
to query it. The INLAND queries are then handled by the
second component of the LADDER system which is Intelligent
Data Access (IDA). For every syntactic unit within the input
sentence, the INLAND module constructs fragments of an
IDA query. These fragments are then merged to form more
recognizable syntactic units. At the sentencing stage, the IDA
receives these combined fragments as a command. The IDA
writes a response to the user’s query as well as prepare the
correct sentence of file queries.

The third part of the LADDER system is the File Access
Manager (FAM). FAM’s function is to locate and control
the access of generic files in the distributed database. The
LADDER system was implemented in LISP. At the time of
it’s creation, the LADDER system was able to operate on a
database containing 100 attributes and 14 tables.

C. CHAT-80

In the 80’s, Chat-80 was the leading NLP system. This sys-
tem was implemented with a famous programming language
at that time known as Prolog. It was an efficient and advanced
system. Its World Database contains various database rivers,
oceans, countries, cities, borders and English vocabulary that
is used for querying the database. This model translates the
question asked in English by building a logical form with the
help of three functions.

The program translates the English question by developing
a logical form as processes of three serial and complementary
functions where:

1) Logical constants are used to represent words.
2) adjectives, verbs and nouns are represented by Predi-

cates.
3) Conjunctions of Predicates represent complex sentences

or phrases.
Grammatical structure of the sentence is defined by Parser

in this system. Prolog Clause helps directly in interpretation
and scope rules of translation. The underlying implementation
that Chat-80 follows is simple, it emphasises extra control
knowledge to the logical form of query and forms a chuck
of Prolog program that can be executed directly to get the
answer. Control knowledge produced includes generally two
forms:

1) The order that Prolog will follow to execute will be
decided by command predictions of a query.

2) Divides the program into sub-problems so the amount
of Backtracking required by Prolog is less.

IV. RELATED WORK

In “Conversion of Natural Language Query to SQL Query”
[1], they have explained basic terms to convert natural lan-
guage statements to SQL queries. It gives brief information
terms such as Tokenization, Lexical, Syntactic and Semantic
Analysis. Following are the steps they followed:-

• Tokenization:- The entered query gets tokenized by sep-
arating the entire sentence into individual words. These
words are then saved in a list and the list is passed for
lexical analysis.

• Lexical Analysis:- The lexical analyzer will receive the
list and replace the words in the list with the correspond-
ing database word, from the dictionary and will pass it
for syntactic analysis.

• Syntactic Analysis:- Here, a dictionary containing the
attribute names, table names, and keywords is maintained
and every tokenized word is mapped to its appropriate
attribute name.

• Semantic Analysis:- In this step, it finds words that
represent any conditions and will replace such words with
there symbol. For Example: If in the sentence there is
a word like “greater than”, it will get mapped with the
symbol ≥ .

From the paper “Domain-Specific Query Generation from
Natural Language” [2] in reference, they have given detailed
information about the framework used for query generation.
It includes Input queries, Pre-processing of query, Extracting
Domain Specific Data, Semantic Disambiguation, using pre-
defined SQL Syntax to generate SQL Query.

• Tokenization, Part of Speech (POS) tagging, stemming,
and removal of stop words are the steps involved in pre-
processing of query.

• Words or phrases can have more than one interpretation,
can be identical or can be different. Semantic Disam-
biguation explains how we can overcome this problem.
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• Domain-Specific Information Extraction involves catego-
rizing words, and finding out whether they are nouns,
verbs, adjectives, etc.

• In the next step, the tokens are mapped with SQL
keywords such as INSERT, SELECT, DELETE, etc.

To compute the performance of their system, they used the
Recall, Precision and F-measure values, based on which they
got 82% correct results.

In the paper, “Nquery-A natural language statement to
SQL query generator” [3], their system is totally presented
considering MySQL Database. The approach which they have
followed is the extraction of certain keywords from natural
language sentences by forming tokens and tags goes through
natural language processing. Analysis of these tags and tokens
is done. Further, from generated information mapping to table
names and columns is done. It then removes any redundancy
if present and maps clauses in the query. In the next step, it
forms a final query and executes it. The analysis report shows
the accuracy of the system was found as 86%. Their system
is capable of handling Simple queries as well as complex
queries containing natural and inner joins. Handles Aggregate
functions and various clauses like Order By, Group By.

Limitations of their system is that mapping fails in some
queries like, who teaches Physics?. It will take Physics as a
Department as it fails in this case to identify that who refers
to an instructor.

In the paper [4], authors have given that implementation was
carried out using RNN (an autoencoder and decoder converts
human language voice to sentence) and LSTM(encoder and
decoder coverts sentence to SQL query). So using both in one
setup will solve the problem of Semantic Parsing. This paper
challenges several ways to ask a question and match all the
different types of questions to the desired output. The accuracy
of their system was recorded as 60%. They used WikiSQL as
their dataset. WikiSql [5] is a set of data(dataset) having 87726
Question samples and their SQL queries and these are all made
using 26375 tables from Wikipedia.

In ”SyntaxSQLNet: Syntax Tree Networks for Complex and
Cross-Domain Text-to-SQL Task” [6], the decoder is struc-
tured by the model as a group of recursive modules. The usage
of SQL specific grammar helps them to guide the process
of decoding, which makes them allow to grab the benefit
of well-defined structure of SQL queries’. Modules likewise
do not share any parameters, so that they can be trained
independently. In their model, they have used Input Encoder,
Table-Aware Column Representation, SQL Decoding History,
and Attention for Input Encoding. In the project, they have
also used cross-domain data augmentation method to expand
our training data for complex queries. The difficulty of Cross-
domain data augmentation is quite greater in comparison to the
in-domain setting. The reason behind this is that the domain-
specific words and phrases are tending to be included by
question program pairs.

”SQLNet: Generating Structured Queries from Natural Lan-
guage Without Reinforcement Learning” [7], shows that they
have Put forward an idea, Where SQLNet can be used to

control and manage the NL2SQL task. The approaches in
a most existing system employ a model named sequence-to-
sequence, which would suffer from the problem named“order-
matters” in which the order actually did not matter. Their
model was able to overcome this problem in a better way
as compared to the previous attempts that used the technique
named reinforcement learning to resolve this problem by only
a slight enhancement, for an instance by about 2 points.
Now, SQLNet overcomes this problem of “order-matters” by
adapting and employing a model named sequence-to-set to
retrieve SQL queries in which the order did not matter. To
further boost the performance of the sequence-to-set model,
they introduced the column attention technique. Overall, we
notice that their SQLNet system would improvise over the
previous work that is Seq2SQL, by a great marginal amount
that ranges from 9 points to 13 points on different metrics.
This shows us that their mechanism can favorably resolve
the problem of “order-matters”, and illuminate some novel
solutions to the problem of structure generation when order
doesn’t matter.

V. PROPOSED SYSTEM

A. How to develop such a system?

For developing a natural language interface of this type,
the system is responsible for decoding users’ queries and
convert them into appropriate SQL queries automatically. So
the question arises on how to build such systems? To train
neural networks on a larger scale of data having questions and
SQL pair labels We have applied deep learning methodology.
These methods are more robust and scalable compared to rule-
based and well-designed systems.

B. Building Interface

The aim to develop this interface is to master the complex
text-to-SQL job involving SQL clauses, nested queries, and
multiple tables. Moreover, for testing and training, we have
used separate databases that aim to build models that deduce
to new databases.

1) Dataset: To proceed with this project, the first thing
we will need is a huge dataset of English questions and their
corresponding SQL query. However, there is a problem where
to find these many questions and SQL pair labels to train our
model? Building this kind of dataset takes a huge amount of
time and effort. The reason for that is the developer has to
recognize the schema of the database, frame the questions, and
then finally write the appropriate SQL queries of it. This all
requires precise database knowledge and must have expertise
in SQL.

Another kind of difficulty in creating such a dataset is that
there are limited numbers of databases with multiple tables
that are non-private. So To resolve the necessity for a high-
quality, huge dataset for this work, SPIDER [8] dataset is used.
It includes two hundred databases containing multiple tables,
Ten thousand one eighty-one questions, and five thousand six
ninety-three matching complex SQL queries. This dataset is
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composed of eleven Yale students that spent a total of thousand
man-hours!

All questions and SQL queries in the SPIDER dataset are
composed and assessed by eleven students of computer sci-
ence. The only Text-to-SQL dataset containing both databases
involving several tables in several sectors and complex queries
of Structured Query Language is the Spider dataset. It also
can adapt to new domains along with the capability to deduce
new SQL queries and database schemas. Compared to other
datasets, Spider includes databases with several tables and
includes SQL queries that involve many complex SQL classes.
Another comparison concerning the total of previous text to
SQL datasets is that the Spider has about two times more
nested queries and ten times more ORDER BY and GROUP
BY (HAVING) components. Spider includes two hundred
different databases that cover one thirty-eight distinct sectors
such as club, TV show, government, college, etc.

2) Power of Softmax function: “Softmax function or soft-
max is a type of logistic regression that normalizes an input
value into a vector of values that follows a probability distri-
bution whose total sums up to 1” [12]. Its output values are
in range from 0 to 1 which is good since our neural network
model can get rid of binary classification and accommodate
various dimensions and classes. This is why softmax function
is referred as “multinomial logistic regression”, a prediction
based analyser, it is similar to multiple linear regression.
While training a dataset this function is used to determine the
losses. Noise Contrastive Estimation and Cross-Entropy are
the best use cases of this function as it helps to optimize the
training data and hence increase the probability of predicting
the correct sentence or a word. Calculation of conditional
embedding H1/2 of an embedding H1 such that embedding
H2 is given.

H1/2 = softmax(H1WH2)H1 (1)

P (A) = softmax(Xtanh(A)) (2)

Here W, X is trainable parameter. Probability distribution is
calculated based on score matrix A.

3) Models(Modules):
1) Aggregate Predictor: It handles the prediction of Aggre-

gate function like MIN, MAX, COUNT, AVG, SUM and
NONE.

2) Keyword Predictor: It handles prediction of keywords
like FROM, GROUP BY, ORDER BY and WHERE.

3) Having Predictor: It handles prediction of HAVING and
make sure that it used only with the clause GROUP BY.
It gets executed only after there is prediction of GROUP
BY clause.

4) Col Predictor: It handles predicting table columns.
5) Operator Predictor: It handles operators like >, <, =, ≥,

≤, ! =, NOT IN, IN, LIKE, BETWEEN.
6) Set Operation Predictor: It handles predicting INTER-

SECT, EXCEPT, UNION, and NONE, which sometimes
helps if we need to run generate nested queries.

7) Root terminal Predictor: The terminal value and new-sub
query Root is handled by this module. With the help of
this nested query is generated.

8) AND-OR Predictor: This module takes care of predic-
tion of AND, OR if some condition is present in the
query.

9) Desc-Asc-Limit Predictor: It handles predicting the key-
words associated with ORDER BY clause and it play
its role when some arrangement is needed in particular
order. If ORDER BY is predicted then only it gets
executed.

10) Insert, Delete, Update Predictor: This module handles
the prediction of INSERT, DELETE and UPDATE DML
commands.

Fig. 1. Illustration of modules.

Although our models are almost like SyntaxSQLNet
[6] and TypeSQL [11], their models are only ready to
predict SELECT commands, whereas our models aim at
improving the overall efficiency and can also handle various
Data Manipulation Language (DML) commands other
than SELECT commands, such as INSERT, DELETE and
UPDATE queries. Their system only generates the SQL
query, which might be very complicated and difficult for
non-technical users to understand. Our system executes the
query generated by the model on the corresponding database
using the sqlite3 module of python, fetches the desired
result, and displays it on a comprehensible Graphical User
Interface(GUI).
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4) Algorithm:
1) Step 1. User give their input in Natural Language.
2) Step 2. Perform data pre-processing tasks such as mor-

phological, lexical, syntactic and semantic analysis.
3) Step 3. Next, perform word embedding on sentence

using GLoVe-an unsupervised learning algorithm.
4) Step 4. Call different predictors which the system uses,

such as, operator, keyword, etc.
5) Step 5. Recursively call those modules until a proper

query is generated.
6) Step 6. Executed the generated query on the correspond-

ing database, fetch the result, and display it on GUI.
However, if the model is not able to generate a proper
query, it displays the appropriate error message to the
user.

Fig. 2. Flowchart of the system.

VI. RESULTS AND DISCUSSION

Our project demonstrates a practical solution to query a
database using natural language, for the users that do not have
any knowledge about SQL. Our model has high efficiency in
generating SQL queries and achieves the exact match accuracy
of 60%.
Drawbacks of systems that already exists.

• They cannot handle complex queries very well.
• They can execute only a few type of SQL commands.
• Many existing systems are build for a specific purpose

due to which they are restricted only to a certain database.

Fig. 3. Use Case Diagram of the system.

Our System - This project is currently capable of handling:-
• Complex queries involving joins.
• Aggregate functions in queries.
• ORDER BY, GROUP BY, HAVING clauses within SE-

LECT command.
• Incorporates a wide range of queries on multiple tables.
• Can handle commands other than SELECT as well, such

as UPDATE and DELETE commands.
• Can execute the generated query on the database and

return the actual result.

Fig. 4. Schema of a database named ”concert-singer” from dataset.

The above figure shows the schema of a sample database
”concert-singer” from SPIDER dataset. The Fig. 5 shows the
different level of hardness of queries generated by our model.
Those queries are executed on the sample database ”concert-
singer”. All 206 databases in our dataset are split into 146
train and 60 test as training data and test data respectively.
All questions for the same database are in the same split.
Still many research work is going on in this field of NLP
to develop a robust interface for databases that are able to
generate accurate results for a sentence to DB query.
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Fig. 5. Predictions made by the system.

With advancement in computational power many natural
language Interface for Database able to generate better results.
But still it is not commonly used, as more powerful and
efficient algorithms need to be developed for optimised query
and make it available for general use [9].

Fig. 6. Execution and output of query.

VII. CONCLUSION

In this paper, we proposed a deep neural network for
converting natural language to SQL queries. We provided a
user interface where users can ask a question by typing their
questions directly, and they will get the desired result. Also,
our model trained with large datasets so as to handle complex
queries (like Clauses, Joins). Thus, now it becomes easy to
get data from the database, and even non-technical users can
extract the required information from the databases and get
the answer to their queries.

VIII. FUTURE WORK

1) Our system can only execute queries on MySQL
Database, and it can be extended to support more
databases like NoSQL, unstructured database.

2) For now, this system support only English languages,
other language can be incorporated to make more user-
friendly.

3) The system can be modified to support voice commands
which will enable users to ask their queries in the form
of speech and the software will convert it into text
(speech-to-text).

4) We can modify the system by adding a feedback module
wherein the users will be asked to provide correct results
if the generated result was incorrect and if so, it will be
added to the training set. Thus the neural network can
be trained through feedback and will be able to achieve
higher accuracy.

5) More effective algorithm can be built to manage com-
plex queries.

6) We also intend to do real-time testing with all possible
inputs to make our system more accurate and more
feasible with real-time users.
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