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Abstract—In the field of multi-data analysis and fusion, image
fusion plays a vital role for many applications. With inventions
of new sensors, the demand of high quality image fusion
algorithms has seen tremendous growth. Wavelet based fusion is a
popular choice for many image fusion algorithms, because of its
ability to decouple different features of information. However,
it suffers from ringing artifacts generated in the output. This
paper presents an analysis of ringing artifacts in application of
image fusion using directional wavelets (curvelets, contourlets,
non-subsampled contourlets etc.). We compare the performance
of various fusion rules for directional wavelets available in
literature. The experimental results suggest that the ringing
artifacts are present in all types of wavelets with the extent of
artifact varying with type of the wavelet, fusion rule used and
levels of decomposition.

Index Terms—Directional Wavelets, Image Fusion, Modified
Structural Dissimilarity, Ringing Artifacts

I. INTRODUCTION

Fusion of complementary information from different source
images is known as image fusion. In this digital age, there is
a huge influx of data captured from multiple camera setting
and/or sensors of the same object or scene being imaged. Each
image captured, thus exhibits different features of data, with
varying amounts of details of the objects. Combining these
shreds of information from different images becomes imper-
ative, as it helps in defining the big picture. For example, in
medical applications, fusing Computerized Tomography (CT),
Magnetic Resonance Imaging (MRI), Functional Magnetic
Resonance Imaging (fMRI), Positron Emission Tomography
(PET) etc., helps in the diagnosis of a disease in a reliable,
efficient and quick manner. In surveillance, use of visible and
infrared (IR) images is a common practice. High dynamic
range (HDR) imaging involves fusion of differently exposed
low dynamic range (LDR) images.

The objective of image fusion is find one image which has
more information about the scene than any of the source im-
ages. The input data for image fusion algorithms is generally
of two types:

o Images taken from a single sensor but with differ-
ent parameters of the imaging apparatus. Examples in-
clude multi-focus images, multi-exposure images, multi-
temporal images etc.
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o Images taken from multiple sensors. Examples include
near infrared (NIR) images, IR images, CT, MRI, PET,
fMRI etc.

We can broadly classify the image fusion techniques into four
categories:

1) Component substitution based fusion algorithms [1]-[5]

2) Optimization based fusion algorithms [6]-[10]

3) Multi-resolution (wavelets and others) based fusion algo-

rithms [11]-[15] and

4) Neural network based fusion algorithms [16]-[19].

Wavelet based multi-resolution analysis decouples data into
low frequency (LF) and high frequency (HF) components at
various scales. This allows for separate processing of LF and
HF components, and gives more flexibility and freedom in
designing better fusion algorithms. Also, the computational
complexity is very low for wavelet analysis-synthesis filter
banks. These advantages make wavelets popular for the image
fusion applications. The wavelet based image fusion algo-
rithms follow three simple steps:

1) Decompose source images into LF and HF coefficients
to form wavelet pyramids.

2) Fuse LF and HF coefficients using the prescribed fusion
rule to form a fused wavelet pyramid.

3) Take inverse transform of the fused coefficients to get the
fused image.

One of the simplest fusion rule in wavelet base fusion is
mean-max fusion. In mean-max fusion, the detail coefficient
with the highest magnitude among two images is chosen
as the detail wavelet coefficient of the fused image. This
ensures maximum detail preservation in the fused image.
The approximate wavelet coefficients are generated by av-
eraging individual approximate wavelet coefficients. In more
sophisticated algorithms, LF and HF coefficients are weighted
based on the certain features like local energy, local entropy,
matching degree, and so on. A study of such fusion rules is
presented by B. Zhang in [20].

Along with separable wavelet transform, use of non-
separable wavelet transforms and other variants of wavelet
transform is also a common practice in many image fusion
applications. Singh and Khare [13] used Daubechies’ complex
wavelet transform for multi-modal medical image fusion. At
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Fig. 1. Example of ringing artifacts

the same time, non-subsampled contourlet transform (NSCT)
is used by Bhatnagar et al. [12] for the fusion of multi-
modal images. Wang et al. [14] used shearlet transform for
decomposition of medical images. Upla et al. [15] used con-
tourlet transform for fusion of panchromatic (PAN) and multi-
spectral (MS) images in remote sensing applications. Malik et
al. [21] has proposed a weight map based wavelet based multi-
resolution fusion for the application of the multi-exposure
image fusion. A general introduction of multi-resolution image
fusion is provided by Piella in [11].

However, the main drawback of wavelet based techniques
is that, they suffer from ringing artifacts in the fused image
[22], [23]. The analysis for the separable wavelets is presented
in our previous work, Vanmali et al. [24] and Kelkar [25].
Two possible methods to compensate ringing artifacts for
separable wavelets are also presented in our previous work,
Vanmali et al. [24]. In this paper, we focus on the analysis of
ringing artifacts in case of directional wavelets like curvelets,
contourlets, non-subsampled contourlets, shearlets. Analysis of
ringing artifacts at different levels of decomposition, using
different fusion algorithms and for a variety of images is
presented in this work.

II. RINGING ARTIFACTS IN WAVELET BASED FUSION

In digital image processing and signal processing ringing
artifacts appear close to strong edges (high gradient value) or
high transitions of a signal. Because of the oscillatory and fad-
ing nature of these artifacts they are called ‘ringing’. In case of
images, for white background, black oscillation are observed
and for dark background, white oscillation are observed. An
Example of ringing artifact in images is shown in Figure 1,
where the fusion of two multi-focus images is performed using

traditional mean-max fusion algorithm. It can be observed that
the ringing artifacts are more prominent across the strong
edges and not so visible around the weak edges. Also, the
ringing artifacts are not perceivable around textures (hair’s in
the image) as textures themselves are oscillatory in nature.
Even though ringing artifacts will be present in such areas,
they will not be perceivable to the naked human eye because
of smaller magnitude perturbations than background textures.

Ringing artifacts intrinsically occur because the loss in HF
information of a signal. In wavelet based image fusion, it is
because of loss of the original HF coefficients of an image
and subsequently substitution with other coefficients in that
place. Preliminary analysis of ringing artifacts in wavelet based
fusion is given by Dippel et al. in [22]. According to Dippel
et al., in case of wavelet pyramid, there is a strong parent-
child relationship among the coefficients termed as inter-scale
correlation . In the fusion process, this relationship is altered,
giving rise to the ringing artifacts. Also, the reconstruction pro-
cess involves frequency sensitive high pass filtering operation,
which further amplifies these ringing artifacts. These ringing
artifacts are dominant for strong edges than weak edges.

In our previous work, Vanmali et al. [24] and Kelkar [25]
investigated more on this problem with thorough experimen-
tation for separable wavelets to draw following observations:

o The ringing artifact increases with the number of levels

of decomposition, and then remains constant after a
particular level of decomposition.

o Ringing artifacts are more abrupt for smaller lengths of

the filters.

« Ringing artifacts are smoother for higher lengths of the

filters.
We now extend this work for the directional wavelets.

III. EXPERIMENTAL SETUP

For the analysis of artifacts in case of the directional
wavelets, we use similar experimental setup as used in Vanmali
et al. [24] and Kelkar [25]. We start with a standard test image,
and form two multi-focus images, first with increasing blur
from bottom to top and the second with increasing blur from
top to bottom. An example of the input images so generated
is shown in Figure 2. These multi-focus images are then
fused using different fusion algorithms with varying levels of
decomposition and the corresponding outputs are observed.
Since, we are forming multi-focus images from the standard
test image, it makes ground truth available, which can be
used to compare the quality of fusion. The experiments were
carried out for standard test images of ‘Phantom’, ‘Peppers’,
‘Girlface’, ‘Lena’, and ‘Baboon’, all of size 512 x 512 pixels.
The ‘Phantom’ images has constant gray level areas without
any shading and texture. The ‘Peppers’ images has variation
in the shading with very low amount of texture. The images
have increasing amount of texture from ‘Peppers’ to ‘Baboon’.

A. Ringing Measurement Metric: Modified Structural Dissim-
ilarity (MSD)

Structural Similarity Index (SSIM) [26] is one of the most
popular full references image quality assessment tool. SSIM
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(a) Original image (b) Multi-focus image 1 (c) Multi-focus image 2

Fig. 2. Input images for the experiments generated from a standard test image.

(a) ‘Lena’ Image

q
1
Mask after dilation of edges (d) Image after mask multiplica-
tion

Fig. 3. Modified SSIM metric for measurement of ringing artifacts

is believed to be close to human visual system than traditional
methods like mean square error (MSE) or peak signal to
noise ratio (PSNR). It measures distortion in structures in
fused image with reference to the original image. SSIM values
ranges from O to 1, where 1 value is returned if the two
images are same. When used directly to measure ringing, it is
observed that, SSIM values were not consistent with the visual
observations [25]. Therefore, SSIM was modified to measure
the ringing artifacts.

The ringing artifacts are more prevalent near the strong
edges and have much smaller magnitudes near weak edges. In
the highly textured areas, the ringing artifacts gets absorbed
in the texture and hence, are not perceived visually. This
phenomenon is called as ‘texture masking’ [27]. Also, we are
interested in the changes that has taken place in the fused
image, compared to the original image. Therefore, we modify
the SSIM metric as explained below and call it Modified
Structural Dissimilarity (MSD) as used in [25].

o Detect strong edges using Canny edge detector.

« Dilate the detected edges on both sides to get a mask so
that only areas surrounding strong edges are taken.

o Multiply the mask with the original and the fused image.

o Calculate SSIM of the fused image w.r.t. the original
reference image in the masked regions.

o Calculate MSD as

MSD =1-SSIM (1)

The above steps are depicted in Figure 3 for understanding.

The mean value of the MSD is taken as the amount of ringing
artifacts present in the fused image. It was observed that,
this modified metric gives values consistent with the visual
perception of changes in ringing artifacts.

IV. DIRECTIONAL WAVELETS AND FUSION RULES UNDER
CONSIDERATION

Curvelet, contourlet, non-subsampled contourlet and shear-
let transform will be used for analysis of ringing artifacts. All
of these transforms are termed as directional wavelet trans-
forms, because their basis functions are orientation dependent.
In this section, we will give a brief overview of each transform
used in analysis and list the different fusion rules used for
analysis of ringing artifacts.

A. Curvelet Transform

The wavelet transform is good at representing only point
singularities, but many natural images have curve singularities,
which are not represented well by wavelets. With the objective
to overcome these drawbacks the curvelet transform was
proposed by Candes et al. [28]. In images, curvelets allows
an almost optimal sparse representation of objects with curve
singularities. For a smooth object f with discontinuities along
C?-continuous curves, the best N-term approximation fy
obeys ||f — fn|]3 < CN~2%(logN)3, while wavelets decay
at only N—!. As curvelets are defined in continuous domain,
extending the algorithm to discrete data i.e. images is quite
challenging. We don’t have an exact representation of images
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in curvelet domain, rather it is the best approximation in digital
domain, which is highly redundant.

Curvelets were analyzed only for the mean-max fusion rule.
This fusion rule is implemented for all directional wavelets so
the performance of each one can be compared.

B. Contourlet Transform (CT)

The contourlet transform [29] is different from curvelets.
Curvelets are defined in the continuous domain and then
discretized for sampled data, whereas the contourlet is con-
structed in the discrete domain and then its convergence prop-
erties are studied in the continuous domain. Contourlets are
constructed using non-separable filter banks. The performance
of curvelets in representing directional geometry/features is
better than contourlets. The drawback of this approach is that
various artifacts occur when used in different applications
like denoising or compression and also associated continuous
domain theory is missing.

For ringing analysis in the contourlet domain, two algo-
rithms are implemented. First is the mean-max rule and second
is proposed by Yang et al. in [30].

C. Non-Subsampled Contourlet Transform (NSCT)

NSCT proposed by Zhou et al. in [31], is an overcom-
plete, shift-invariant and multi-directional image decompo-
sition transform. NSCT is highly redundant as it does not
contain up- and down-samplers which are present in CT. Due
to removal of up and down-samplers, the design problem is
less constrained than contourlets. NSCT performs better at the
task of image denoising and image enhancement than curvelets
and contourlets.

Five different algorithms were implemented for analysis of
ringing artifact in NSCT domain.

i) Mean-max fusion rule

ii) CT and MR image fusion scheme in NSCT domain
proposed by Ganasala and Kumar [32]

iii) Directive Contrast based Multimodal Medical Image Fu-
sion in NSCT Domain proposed by Bhatnagar et al. [12]

iv) Multi-focus image fusion based on non-subsampled con-
tourlet transform and focused regions detection proposed
by Li et al. [33]

v) Multifocus image fusion using the non-subsampled con-
tourlet transform proposed by Zhang et al. [34]

D. Shearlet Transform (ST)

The shearlet transform [35] is the only transform which has
a unified theory in both continuous and digital domain, and
can give an optimal sparse approximation of piecewise smooth
images with singularities along smooth curves. Shearlets form
an affine system, which parameterize directions by the slope,
as compared to angles in contourlets and curvelets. This
helps in simplified treatment in the digital domain, and also
allows for an extensive theoretical framework. Also, the N-
term approximation of shearlet coefficients is same as that of
curvelets (||f — fn|[3 < CN~2(logN)?).

For the analysis of ringing artifacts, five fusion algorithms
were implemented and their results compared.

i) Mean-max fusion rule

ii) Multi-modality medical image fusion based on new fea-
tures in NSST domain by Ganasala and Kumar [36]

iii) Feature-Motivated Simplified Adaptive PCNN-Based
Medical Image Fusion Algorithm in NSST Domain by
Ganasala and Kumar [37]

iv) Technique for image fusion based on NSST domain
improved fast non-classical RF proposed by Kong et al.
[38].

v) A novel image fusion algorithm based on non-subsampled
shearlet transform proposed by Yin et al. [39].

V. RESULTS AND DISCUSSION

For each fusion algorithm, we used the experimental setup
as discussed in III. The levels of decomposition are varied
from 1 to 5 as concluded in [24] and the fused outputs are
observed. For quantitative analysis, the mean MSD values
are recorded and plotted against levels of decomposition. For
brevity, the results for the ‘Girlface’ image with two inputs as
shown in Figure 1, with 4 levels of decomposition using each
fusion rule are shown in Figure 4.

A. Curvelet Transform

It is observed visually that, ringing artifacts are present
across all the levels, when images are fused using curvelets.
These artifacts increase with the levels of decomposition.
For images with smooth gray levels, the artifacts are more
perceivable than the one with texture. The plots for the mean
MSD scores of curvelet based fusion for different images is
shown in Figure 5. The plots show trends in line with the visual
inspection, except for the ‘Baboon’ image. For the ‘Baboon’
image, the mean MSD values are highest among all the images
indicating presences of maximum amount of ringing artifacts.
However, these artifacts are not perceived visually because of
the extremely high texture content in the image on account of
texture masking [27].

B. Contourlet Transform

For contourlets, the ringing artifacts observed for both the
fusion rules across all the levels of decomposition in the fused
images. For mean-max fusion, initially the artifacts increased
with the levels of decomposition up to level 3, and then
remained same for the for the higher levels in most of the
images. For the fusion rule proposed by Yang et al. [30], the
ringing artifacts are almost unchanged across all the levels
of decomposition except for level 1 and 2. Compared to the
mean-max fusion, less ringing artifacts are observed for results
of Yang et al. [30] for higher levels of decomposition. Results
of Yang et al. [30] has better contrast and more details than that
of mean-max fusion. Also, for both the rules, the amount of
artifacts increases with the amount of texture. The quantitative
analysis confirmed these trends. The mean MSD plots are
shown in Figure 6.
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Fig. 4. Fusion results for the ‘Girlface’ image using different fusion rules. (a) For curvelet transform: Mean-max fusion. (b) and (c) For contourlet transform:
Rule 1- Mean-max fusion, Rule 2- Yang et al. [30]. (d) to (h) For NSCT. L to R: Rule 1- Mean-max fusion, Rule 2- Ganasala et al. [32], Rule 3- Bhatnagar
et al. [12], Rule 4- Li et al. [33], Zhang et al. [34]. (i) to (m) For shearlet transform: Rule 1- Mean-max fusion, Rule 2- Ganasala et al. [36], Rule 3- Ganasala

et al. [37], Rule 4- Kong et al. [38], Rule 5- Yin et al. [39].

C. Non-Subsampled Contourlet Transform

In the visual inspection, ringing artifacts are seen for all
the rules used for NSCT. Mean-max fusion and fusion with
Ganasala et al. [32] shows an increase in the ringing artifacts
with increase in the levels of decomposition in most of the
images. For Zhang et al. [34] a slight decrease is observed.
For Bhatnagar et al. [12] and Li et al. [33] significant decrease
was observed in the ringing artifacts with increase in the levels
of decomposition. For higher levels. the outputs of Li et al.

[33] were very close to the original image.

The plots of the mean MSD scores for NSCT are shown
in Figure 7. Here, the mean-max fusion has the least scores.
One can observe huge improvement in the mean MSD scores
for Bhatnagar et al. [12] and Li et al. [33] in all the images.
Both these algorithms have mean MSD score very close to
the mean-max fusion. However, when observed visually, the
outputs of Bhatnagar et al. [12] and Li et al. [33] are much
better than the mean-max fusion.
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Fig. 5. Plots of mean MSD values for fusion using curvelet transform

D. Shearlet Transform

For shearlets, except for Ganasala et al. [37], all the rules
show an increase in the ringing artifacts with levels of de-
composition. For Kong et al. [38], the outputs have lesser
ringing artifacts visually, whereas Ganasala et al. [37] have
more details in the fused output. The plots of the mean MSD
scores for NSCT are shown in Figure 8. In these plots, one can
see the mean-max fusion has least score for all the images.
But, similar to NSCT, it has more ringing artifacts visually
compared to Ganasala et al. [37] and Kong et al. [38].

E. Comparison among different transforms

To compare performance of different directional wavelets,
we compared the mean MSD plots of different images and
different levels of decomposition. The comparison is made in
two ways. In the first case, we compared the performance with
only mean-max fusion rule. In the second case, we selected
the best performing fusion rule for each transform and then
compared their performance. For curvelets it is mean-max
fusion rule; for contourlets it is Yang et al. [30]; for NSCT it
is Li et al. [33]; and for shearlet it is Kong et al. [38]. The
plots of these comparisons are shown in Figure 9. From these
plots, it is clearly observed that NCST can be the preferred
choice for fusion among the different directional wavelets to
have less ringing artifacts in the final fused results. At the
same time, contourlets and shearlets exhibit high amount of
ringing artifacts in the image fusion.

VI. CONCLUSION

The analysis of ringing artifacts for directional wavelets
like curvelets, contourlets, non-subsampled contourlets and
shearlets is presented in this paper. The experimental results
confirmed that the ringing artifacts are unavoidable in the
process of wavelet based images fusion. The degree of artifacts
vary based on the fusion rule, levels of decomposition and
amount of texture in the images. In most of the directional
wavelets, the artifacts increase with the increase in the levels
of decomposition, except for a few fusion rules employing
NSCT. Also, in most of the images, the artifacts increase with
the texture and edge strength. Among the different directional
wavelets, NSCT exhibits less amount of ringing artifacts.

Hence, NSCT can be the preferred choice for the image fusion
using directional wavelets.
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