
Vision based Obstacle Avoidance System for

Autonomous Aerial Systems

Prof. Kanchan Sarmalkar

Instrumentation Dept.

Vidyavardhini’s College of Engineering and Technology,

University of Mumbai, Palghar, India

Sanil Jain

Instrumentation Dept.
Vidyavardhini’s College of Engineering

and Technology, University of Mumbai Palghar, India

Dr. Swaroop Hangal

Aerospace Dept.

Indian Institute of Technology, Powai, Mumbai, India

Abstract— Here we present this topic to explore the idea of
how autonomous unmanned aerial vehicles are creating
significant transformational revolution with the collision
avoidance algorithms. And, also, how we could strategically
create more advanced ways to improve and improvise the
functioning of sensors used in aerial robotics by replacing them
with the cost-efficient camera modules and apply AI or even
non-AI enabled computer vision. The primary aim of the
project is to look for various systems which could help
autonomous drones in detecting obstacles with the help of
computer vision, and accordingly letting the UAV to maneuver
in order to prevent collision.

Keywords— UAV, Autonomous, Computer Vision, Aerial
Robotics

I. INTRODUCTION

There has certainly been an overlooked revolution which
has changed our lives dramatically. With every new
invention, a new change is being followed. Inventions have
been kicking the notch to an extent of achieving higher
ends. And most recently, we witnessed the invention of the
Autonomous car. But this was all implemented only in
2-dimension, that is, on the ground. The revolution that
needs to be addressed is making use of 3rd-dimension, the
aerial dimension, which already has been coming with
applications with endless possibilities. Autopilots were
another start of the aerial robotics era. Now, with the recent
multiple innovations, most notably came the idea of
unmanned aerial vehicles. the development of UAVs and
micro aerial vehicles boomed in the past decade with
various innovative thoughts crossing boundaries of all the
applications in the public, civil and military sector. The
recent developments added to the field were the making of
autonomous drones. So, what we aim in this presented paper
is to check and see how many possible ways are there with
which autonomous drones would function when dealing
with obstacles.

II. AIMS AND OBJECTIVES

The drone is fitted with a GPS and programmed to be able
to autonomously move swiftly from one location to another
using GPS waypoints in a preplanned path. A significant

consideration is given to safety and ruggedness due to the
possibility of collision with a variety of objects. The
primary aim of the project is to design a system which will
help autonomous drones in detecting obstacles and
determining at what distance those obstacles are present
with the help of computer vision algorithms, and
accordingly prevent a collision.
The goal of the project is to act as a proof of concept for
small scale autonomous aerial robotics.

III. LITERATURE REVIEW

1. EXISTING SYSTEM

The presented method relies on visual navigation using the
on-board camera of the drone employed in the control
feedback with vision playing a key role in maneuvering. A
paper presented on obstacle avoidance in a MAV uses 2
LRF modules or any proximity sensors in a setup called
Hardware-in loop simulation [1]. This is a setup that
replaces simulation models of some flight critical hardware
like OBC, servos, and communication devices in the loop
with actual hardware. The most important feature in the
HILS setup is its capability to perform the Real-Time (RT)
simulation.

There exist two main categories of obstacle avoidance
algorithms. On one hand there are the local or reactive
approaches. Those algorithms do not build a map of the
environment or save obstacle positions. They calculate the
best reaction from the current sensor data. On the other hand
there are the global approaches. Those algorithms have
access to a map of the environment which is already
precomputed or they build the map themselves while
encountering obstacles.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

730

www.ijert.org
I_JAISWAL
183_Vision Based obstacle avoidance system for autonomus arial system

I_JAISWAL
AreaHighlight

Often path planning algorithms, such as dynamic
programming of A* algorithms[2] are used to determine the
best path from the given map. And even Dijkstra
algorithm[2] that provides the shortest distance between
any two nodes with a value above a certain metric value.
Those global algorithms are less prone to get stuck in local
minima as they consider all the available information about
the terrain. In the case where the whole environment is
mapped; they might even yield an optimal solution.
However, global methods require a lot of computation
power. Goerzen et al. [3] give an overview over the most
common obstacle avoidance algorithms, which is focused
mostly on global approaches. They further distinguish
between algorithms which take kinematic and dynamic
constraints of the robotic platform into account and those
which do not.

2. PROPOSED SYSTEM

In the proposed method, we aim to use a drone with GPS
enabled flight controller and creating waypoints using Q
ground Controller, making it to autonomously maneuver
through the predetermined path. A camera available on the
middleware package with a drone would be used inorder to
estimate the distance of any obstacle if any is faced. After
that, using the algorithm of 3DVFH and with a few more
additions in it, the drone autonomously will be able to create
a new and estimated new path to avoid that obstacle and
reach the final waypoint.

IV. SCOPE

We are witnessing the advent of a new era of robotic drones
that can autonomously fly in natural and man-made
environments[4]. Recent developments in the field of
artificial intelligence have also pushed the limits of
autonomous computer vision-enabled systems that if any
obstacle is to be faced in the path, using a camera module
and computer vision algorithms based avoidance systems in
the GPU machines, we would be using radar and lidar
sensor data as ground-truth information. Through this, a
DNN is trained to predict the distance to objects and
simultaneously the drone can be controlled in order to
prevent any collision. In the future, unstructured
environments with remote surroundings would be within the
reach of Global Positioning Systems, since with emerging
technologies in the exploring domain, no place could be
claimed as remote in local territory. So, navigation using
GPS would be rather more viable.

V. FLOWCHART

Figure 1: Logic of the algorithm including all the
discussed features.

VI. IMPLEMENTATION

Module 1 : Robot Operating System

a. Robot Operating System

Writing software and programming for robots is difficult,
particularly as the scale and scope of robotics continue to
grow. Different types of robots can have extremely varying
hardware, making code reuse nontrivial and difficult to
manipulate. Moreover, the sheer size of the required code
can be daunting, since it needs to contain a deep stack
starting from driver-level software and continuing up across
various parameters as described in [5] of perception,
abstract reasoning, and beyond. Since the required breadth
of expertise is well beyond the capabilities of any single
researcher, robotics software architectures must also support
large-scale software integration efforts.

For working on drones in Software In The Loop(SITL), the
mavros ROS package enables MAVLink extendable
communication among computers running MAVLink
enabled autopilots and MAVLink enabled GCS with ROS.
MAVROS is mainly a supported bridge between ROS and
the MAVLink protocol. Currently, it is being extended to
enable fast-RTPS messaging, which includes a layer that
translates PX4 uORB messages to common ROS idioms.

b. Nomenclature of ROS

The fundamental concepts of the ROS implementation are
nodes, messages, topics, and services.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

731

www.ijert.org

Nodes are processes that perform computation. Nodes
communicate with each other by passing messages. A
message is a strictly typed data structure. Standard primitive
types (integer, floating point, boolean, etc.) are supported, as
are arrays of primitive types and constants.
A node sends a message by publishing it to a given topic,
which is simply a string such as “odometry” or “map.” A
node that is interested in a certain kind of data will subscribe
to the appropriate topic. There may be multiple concurrent
publishers and subscribers for a single topic, and a single
node may publish and/or subscribe to multiple topics. In
general, publishers and subscribers are not aware of each
others’ existence.

Module 2 : Gazebo and RVIZ

The design and implementation of new algorithms can be a
difficult task that becomes particularly acute with the lack of
convenient test environments. In situations such as these,
this application with its sensory realism can play a
time-saving role. Conventionally, the development of new
algorithms either required custom simulators or direct
testing on the hardware; Gazebo's realistic environments
and simple interface can drastically reduce the turnaround
time from a conceptual stage to functional system. The
development of Gazebo has been driven by the increasing
use of robotic vehicles for outdoor applications [6]. The 3D
visualization for ROS applications is done using a tool of
RVIZ. It provides a view of your robot model, captures
sensor information from robot sensors, and works upon
those captured data for further commanding of the robot.
The difference between Gazebo and RVIZ is that Gazebo is
the actual real-world physics simulator that helps set up a
world and simulate a robot moving around. Rviz is the
visualization software that allows viewing that gazebo data,
if simulating, or real-world data if the gazebo is not used,
but a real robot.

Module3 : PX4

ROS (Robot Operating System) is a general-purpose
robotics library that can have applications in a way that can
be used with PX4 for offboard control. It uses the
MAVROS node to communicate with PX4 running on
hardware or by using a simulator like Gazebo. PX4 is an
open-source flight control software for Unmanned Aerial
Vehicles, including drones. PX4 provides optimized APIs
and SDKs for developers working with various interfaces
and integrations. It is designed to be deeply coupled with
embedded computer vision for autonomous capabilities. The
framework lowers the barrier of entry for developers
working on localization and obstacle detection algorithms.

VII. ALGORITHM

The 3DVFH Algorithm- The obstacle avoidance
algorithm implemented is based on the 3DVFH algorithm
introduced by Vanneste et al. Vanneste et al. to build a
global map of the environment in the form of an Octomap.
From this global map, local information in a bounding box
around the UAV is extracted to perform the

histogram-based obstacle avoidance. Therefore, this
obstacle avoidance strategy lies somewhere in between
global and local approaches. Having access to a global map
has the main advantage that the algorithm remembers
previously seen obstacles that might not be in the FOV
anymore. But building a global map also introduces a lot of
computational overhead. Therefore, this 3DVFH method is
implemented as a purely local algorithm without building a
global map. The global map is replaced by direct usage of
the 3D point-cloud provided by the stereo camera and a
computationally less expensive memory strategy is
developed to mitigate the inherent issues of a local
approach.

From the cropped point-cloud information, a 2D polar
histogram gets constructed. For every 3D point in the
clipped point-cloud the azimuth and elevation angle with
respect to the UAV position are then calculated. The point is
basically then placed in the corresponding histogram bin. In
the primary polar histogram, each cell will hold the number
of 3D points that fall into its sector. In this process of
carrying out, the primary polar histogram is not masked for
slightest turn radii as the slow flight is inferred and the
drone is able to turn on the spot. The primary polar
histogram is converted into a binary polar histogram by
comparing the point count in each cell with a threshold. To
consider the UAV size as well as a minimum distance to the
obstacles, histogram cells inside a safety margin around
occupied cells are also considered as blocked. The size of
this safety margin is dependent on the obstacle distance.

Figure 2: The angles, elevation and azimuth, with
respect to the UAV position are calculated for all 3D
points. The points are then mapped to the corresponding
2D histogram bin.

For all free cells, cost function is evaluated in the resulting
histogram. The cost function contains a goal orientation
term and a smoothing term. The goal orientation term
compares the evaluated direction to the goal direction. The
smoothing term compares the evaluated direction to the
direction chosen in the last time-step. The histogram cell
with the lowest cost parameter value will then be chosen as
the direction for movement.

In case, when no obstacle is present, the histogram will
consist of only unoccupied cells and the UAV is allowed to
go straight. In this case the waypoint is chosen to lead
directly towards the goal using the ground controller

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

732

www.ijert.org

software instead of determining it from the histogram. This
reduces the computation time, as there is no demand to
evaluate the cost function for every free cell, and it helps
avoid the effects of discrete ways of doing it.

The VFH* algorithm- It was introduced by Ulrich and
Borenstein for navigation of a ground robot in two
dimensions[8]. It allows us to look ahead into the future and
evaluate attainable movements not only for the current
time-step, but also for the subsequent ones. This algorithm
contains approach of combination of both the histogram
method and an A* search algorithm.

The 3DVFH* algorithm- uses the new complete
point-cloud from the camera. Later, it would update the cost
parameters according to the progress made. This enables the
drone to rise if no way can be found around the obstacle.
Then the old histogram is used to re-project the occupied
cells into the 3D space and generate a set of 3D points. The
rst histogram is calculated as a combination of the
re-projected points and the data from the new point-cloud.
This histogram is saved as the old histogram for the next
time-step. In the 3DVFH algorithm, supposedly calculation
of the next waypoint from this histogram is done. But the
3DVFH* algorithm instead builds a search tree to propose
different movement possibilities. This tree has its root at the
current UAV position. This position is entered in the tree as
the rst origin and the tree cost function as well as the
heuristic for the rst node are set. From there, new nodes are
entered into the tree structure until a specied number N of
nodes has been expanded.

VIII. FORMULATION

The implemented 3DVFH algorithm is purely local and
reactive, which means that the algorithm has only access to
the data of the current time-step and in proximity to the
drone. But, the major drawback of local avoidance strategies
is that they do not consider any data or action from previous
time-steps. So, this system is built in accordance with the
polar histogram principle of the 3DVFH algorithm, which
allows us to build a memory for obstacles.

a. Reprojection of Histogram into 3D points
For building a memory using 3DVFH, the memory is

converted into a histogram at the current drone location.
This can be done by re-projecting the occupied cells in the
old histogram into 3D points and with that establishing a
memory histogram from those 3D points. The elevation ∈
and azimuth ζ angles of the four corner points can be
calculated by adding/subtracting half the angular resolution
α of the histogram from the elevation and azimuth angles of
the occupied cell as shown in equation :

, where n = 1,2,3,4 ε n + 2
α

, where n = 1,2,3,4 ζ n + 2
α

 pos d · cos (ε) sin(ζ)p i x = old x + i * Π
180 i * Π

180
 pos d · cos (ε) cos(ζ)p i y = old y + i * Π

180 i * Π
180

 pos d · sin (ε)p i z = old z + i * Π
180

b. Building the histogram from the those points
When the angles of individual 3D points are determined,

then they are needed to be converted into histogram indices.
For every 3D point (pi), the elevation angle () and ε

azimuth angle (ζ), observed from the current position (pos)
of the drone, is calculated with conversion from negative
ranges (-180,180) to positive ranges (0, 360).

 · atan2 (p − pos , p − pos) ζ = π
180

x x y y

 · atan () ε = π
180 p pz − posz

(px − pos x) + (py − pos y) 2 2

From those positive angles, the histogram indices can be
calculated :

 β (α − β%α) β temp = +
 β index = α

β temp − 1
This procedure is used twice in the process. First, to get the
memory histogram and next, to calculate the histogram from
the point-cloud provided by the stereo camera. Then, two of
those histograms are combined. This combination is used in
navigation.

c. Adaptation of Cost-Parameters
When the histogram is built, all directions which are neither
blocked nor inside the safety margin are considered as
potentially viable directions. The cost of every direction is
estimated and the best direction for movement is chosen.
The first criterion of goal orientation is split into three
different parts: Yaw difference ∆yaw, pitch difference
upwards ∆pitch-up and pitch difference downwards ∆pitch-down.

 (g, p) ·∆ (g, p) k ·∆ (g, p)c goal = ∆ yaw + k up pitch−up + down pitch−down
 ∆ (P old, p) ∆ (P old, p)c smooth = yaw + pitch
 k · c k · c c tot = goal goal + smooth smooth

where, is Goal Cost, is the Smoothing Cost, g c goal c smooth
is the goal position, p is the projected potentially viable
direction, Pold is projected old potential direction k is the
weight factor.
The weight factors kgoal and ksmooth define how smooth
the path is with respect to the oriented behaviour. If the
parameters Kup and Kdown are chosen to be higher, the
drone will favor flying around obstacles instead of flying
over or underneath. That way, other directions help in
navigation for the drone according to the pitch of the
parameters.

d. Look Ahead: 3DVFH* with memory
If the old path can be reused, the angle δ to the next node ni

can be calculated:

os(δ) c = 2 L d nodes i

L + d − d − d 2
nodes

 i

2 2
i − 1

The distance li can be calculate from the angle δ through:
li = Lnodes*cos(δ)

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

733

www.ijert.org

Figure 3: Extraction of the next waypoint from a
previously constructed tree path.

From this length the fraction p of the path, which the drone
has traveled between node i and i − 1 can be calculated.
Using this value the new waypoint can be calculated from
the node positions i and i + 1 as described:

 li /L p = nodes
p (1 − p)n pn w = i + i + 1

The different cost terms are weighed with factors k to
determine the importance of each criterion. The cost
function can be written as :

cn = λdepth-n ·(ktarget*ctarget + kyaw*cyaw + kpath*cpath + ktree*ctree)

IX. RESULT

The proposed 3DVFH* obstacle avoidance algorithm is
suitable for real time application on UAVs The introduced
memory strategy is shown to be effective for outdoor ight
as well as complex simulation scenarios. Therefore, in
contrast to the 3DVFH algorithm, the 3DVFH* algorithm is
not dependent on a global map of the environment which
reduces the computational cost of the algorithm. The
algorithm combines the ideas behind the 3DVFH and the
VFH* algorithm with a novel memory approach. The VFH*
algorithm is extended to a 3D environment and the
advantages of the look-ahead functionality can be produced
again using the 3DVFH* algorithm. Due to this look-ahead
capability, the 3DVFH* algorithm did better than the
3DVFH in more complex scenarios.

X. CONCLUSION

The 3DVFH* offers various possibilities for further
improvement by consideration of the drone dynamics.

Those limitations could be added to the cost function of the
look-ahead tree by extending it to include not only
positions, but also velocities. The nodes could be
interconnected by curves instead of straight lines, such that
the maximum velocity for each segment can be calculated.
The 3DVFH* algorithm is a real-time three-dimensional

obstacle avoidance algorithm that uses an octomap to
determine the obstacles locations. The algorithm can
determine the location of these obstacles in real-time
because the algorithm will only take obstacles into account
that are located close to the drone in an aerial dimension.
From the location of the obstacles the algorithm will make a
2D primary polar histogram based on the pose of the robot
and location of the obstacles. Next, the algorithm will take
the physical capability into account. In this 2D binary polar
histogram the algorithm will nd multiple paths, give a path
weight and determine the path with the lowest path weight.
This path will be used to calculate a motion.

XI. REFERENCES

[1] Gade, M. M., Hangal, S., Krishnan, D., & Arya, H.
(2016). Development of Obstacle Avoidance Controller for MAVs: Testing
in Hardware-In-Loop Simulation. This work was sponsored by NP-MICAV
Project No: DARO/081102072/M/I/CN-04. IFAC-PapersOnLine, 49(1),
413–418. doi:10.1016/j.ifacol.2016.03.089 K. Elissa.
[2] Elaf Jirjees Dhulkefl, Akif Durdu, “Path Planning Algorithms
for Unmanned Aerial Vehicles”
[3] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion
planning algorithms from the perspective of autonomous UAV guidance,”
Journal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 65–100,
2010.
[4] D Floreano ,RJ Wood, “Science, technology and the future of small

autonomous drones”
[5] Morgan Quigley, Brian Gerkey , Ken Conley , Josh Faust ,

Tully Foote , Jeremy Leibs , Eric Berger , Rob Wheeler , Andrew
Ng,”ROS: an open-source Robot Operating System “.

[6] Koenig, N., & Howard, A. (n.d.). Design and use paradigms for
gazebo, an open-source multi-robot simulator. 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No.04CH37566). doi:10.1109/iros.2004.1389727

[7]] J. Kramer and M. Scheutz, “Development environments for
autonomous mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2,
pp. 101–132, 2007
[8] I. Ulrich and I. Borenstein, “VFH*: Local obstacle avoidance
with lookahead verification,” IEEE International Conference on Robotics
and Automation (ICRA), vol. 2, pp. 1572–1577, 2000.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NTASU - 2020 Conference Proceedings

Volume 9, Issue 3

Special Issue - 2021

734

www.ijert.org

